The Gromov-Hausdorff distance between spheres

被引:4
|
作者
Lim, Sunhyuk [1 ]
Memoli, Facundo [2 ]
Smith, Zane [3 ]
机构
[1] Max Planck Inst Math Sci, Leipzig, Germany
[2] Ohio State Univ, Dept Math, Columbus, OH USA
[3] Univ Minnesota, Dept Comp Sci, Minneapolis, MN USA
关键词
RECOGNITION;
D O I
10.2140/gt.2023.27.3733
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide general upper and lower bounds for the Gromov-Hausdorff distance d(GH)(S-m, S-n) between spheres S-m and S-n (endowed with the round metric) for 0 <= m < n <= infinity. Some of these lower bounds are based on certain topological ideas related to the Borsuk-Ulam theorem. Via explicit constructions of (optimal) correspondences, we prove that our lower bounds are tight in the cases of d(GH)(S-0, S-n), d(GH)(S-m, S-infinity), d(GH)(S-1, S-2), d(GH)(S-1, S-3) and d(GH)(S-2, S-3). We also formulate a number of open questions.
引用
收藏
页码:3733 / 3800
页数:70
相关论文
共 50 条