Approximation of quantum tori by finite quantum tori for the quantum Gromov-Hausdorff distance

被引:37
|
作者
Latrémoliére, F [1 ]
机构
[1] Univ Toronto, Dept Math, Toronto, ON M5S 3G3, Canada
基金
美国国家科学基金会;
关键词
quantum Gromov-Hausdorff distance; quantum tous; noncommutative metric geometry;
D O I
10.1016/j.jfa.2005.01.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish that, given a compact Abelian group G endowed with a continuous length function l and a sequence (H-n)(n is an element of N) of closed subgroups of G converging to G for the Hausdorff distance induced by 1, then C* ((G) over cap, a) is the quantum Gromov-Hausdorff limit of any sequence C*((H) over cap (n), sigma(n))(n is an element of N) for the natural quantum metric structures and when the lifts of sigma(n) to (G) over cap converge pointwise to sigma. This allows us in particular to approximate the quantum tori by finite-dimensional C*-algebras for the quantum Gromov-Hausdorff distance. Moreover, we also establish that if the length function l is allowed to vary, we can collapse quantum metric spaces to various quotient quantum metric spaces. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:365 / 395
页数:31
相关论文
共 50 条
  • [21] Quantized Gromov-Hausdorff distance
    Wu, Wei
    JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 238 (01) : 58 - 98
  • [22] Zero asymptotic Lipschitz distance and finite Gromov-Hausdorff distance
    Liu, Luo-fei
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2007, 50 (03): : 345 - 350
  • [23] Quantum algebraic tori
    Panov, AN
    MATHEMATICAL NOTES, 2001, 69 (3-4) : 537 - 545
  • [24] Endomorphisms of quantum tori
    Richard, L
    COMMUNICATIONS IN ALGEBRA, 2002, 30 (11) : 5283 - 5306
  • [25] Quantum Algebraic Tori
    A. N. Panov
    Mathematical Notes, 2001, 69 : 537 - 545
  • [26] From quantum tori to quantum homogeneous spaces
    Kamimura, S
    QUANTUM FIELD THEORY AND NONCOMMUTATIVE GEOMETRY, 2005, 662 : 67 - 74
  • [27] Function spaces on quantum tori
    Xiong, Xiao
    Xu, Quanhua
    Yin, Zhi
    COMPTES RENDUS MATHEMATIQUE, 2015, 353 (08) : 729 - 734
  • [28] Modular invariant of quantum tori
    Castano-Bernard, C.
    Gendron, T. M.
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2014, 109 : 1014 - 1049
  • [29] Classification of quantum tori with involution
    Yoshii, Y
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2002, 45 (04): : 711 - 731
  • [30] Quantum Transport on KAM Tori
    Joachim Asch
    Andreas Knauf
    Communications in Mathematical Physics, 1999, 205 : 113 - 128