Approximation of quantum tori by finite quantum tori for the quantum Gromov-Hausdorff distance

被引:37
|
作者
Latrémoliére, F [1 ]
机构
[1] Univ Toronto, Dept Math, Toronto, ON M5S 3G3, Canada
基金
美国国家科学基金会;
关键词
quantum Gromov-Hausdorff distance; quantum tous; noncommutative metric geometry;
D O I
10.1016/j.jfa.2005.01.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish that, given a compact Abelian group G endowed with a continuous length function l and a sequence (H-n)(n is an element of N) of closed subgroups of G converging to G for the Hausdorff distance induced by 1, then C* ((G) over cap, a) is the quantum Gromov-Hausdorff limit of any sequence C*((H) over cap (n), sigma(n))(n is an element of N) for the natural quantum metric structures and when the lifts of sigma(n) to (G) over cap converge pointwise to sigma. This allows us in particular to approximate the quantum tori by finite-dimensional C*-algebras for the quantum Gromov-Hausdorff distance. Moreover, we also establish that if the length function l is allowed to vary, we can collapse quantum metric spaces to various quotient quantum metric spaces. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:365 / 395
页数:31
相关论文
共 50 条
  • [31] The Gromov-Hausdorff distance between spheres
    Lim, Sunhyuk
    Memoli, Facundo
    Smith, Zane
    GEOMETRY & TOPOLOGY, 2023, 27 (09) : 3733 - 3800
  • [32] Harmonic Analysis on Quantum Tori
    Zeqian Chen
    Quanhua Xu
    Zhi Yin
    Communications in Mathematical Physics, 2013, 322 : 755 - 805
  • [33] Quantum transport on KAM tori
    Asch, J
    Knauf, A
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 205 (01) : 113 - 128
  • [34] NONCOMMUTATIVE HOMOLOGY OF QUANTUM TORI
    TAKHTADZHYAN, LA
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1989, 23 (02) : 147 - 149
  • [35] A Lorentzian Gromov-Hausdorff notion of distance
    Noldus, J
    CLASSICAL AND QUANTUM GRAVITY, 2004, 21 (04) : 839 - 850
  • [36] NONCOMMUTATIVE COVERINGS OF QUANTUM TORI
    Schwieger, Kay
    Wagner, Stefan
    MATHEMATICA SCANDINAVICA, 2020, 126 (01) : 99 - 116
  • [37] Harmonic Analysis on Quantum Tori
    Chen, Zeqian
    Xu, Quanhua
    Yin, Zhi
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2013, 322 (03) : 755 - 805
  • [38] Quantum limits on flat tori
    Jakobson, D
    ANNALS OF MATHEMATICS, 1997, 145 (02) : 235 - 266
  • [39] The quantum structure of carbon tori
    Bovin, SA
    Chibotaru, LF
    Ceulemans, A
    JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL, 2001, 166 (01) : 47 - 52
  • [40] Branching Geodesics of the Gromov-Hausdorff Distance
    Ishiki, Yoshito
    ANALYSIS AND GEOMETRY IN METRIC SPACES, 2022, 10 (01): : 109 - 128