Lower bounds for the number of limit cycles of trigonometric Abel equations

被引:16
|
作者
Alvarez, M. J. [1 ]
Gasull, A. [2 ]
Yu, J. [3 ]
机构
[1] Univ Illes Balears, Dept Math & Informat, Palma de Mallorca 07122, Spain
[2] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Spain
[3] Shanghai Jiao Tong Univ, Dept Math, Shanghai 200240, Peoples R China
关键词
Abel equation; periodic orbit; Melnikov functions;
D O I
10.1016/j.jmaa.2007.12.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Abel equation (x) over dot = A(t)x(3) + B(t)x(2), where A(t) and B(t) are trigonometric polynomials of degree n and m, respectively, and we give lower bounds for its number of isolated periodic orbits for some values of n and m. These lower bounds are obtained by two different methods: the study of the perturbations of some Abel equations having a continuum of periodic orbits and the Hopf-type bifurcation of periodic orbits from the solution x = 0. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:682 / 693
页数:12
相关论文
共 50 条
  • [31] Local bifurcations of limit cycles, Abel equations and Lienard systems
    Françoise, JP
    [J]. NORMAL FORMS, BIFURCATIONS AND FINITENESS PROBLEMS IN DIFFERENTIAL EQUATIONS, 2004, 137 : 187 - 209
  • [32] Parametric Centers for Trigonometric Abel Equations
    Francoise, Jean-Pierre
    [J]. JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2008, 20 (04) : 777 - 786
  • [33] Parametric Centers for Trigonometric Abel Equations
    Jean-Pierre Françoise
    [J]. Journal of Dynamics and Differential Equations, 2008, 20 : 777 - 786
  • [34] On the number of limit cycles for perturbed pendulum equations
    Gasull, A.
    Geyer, A.
    Manosas, F.
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (03) : 2141 - 2167
  • [35] Existence of non-trivial limit cycles in Abel equations with symmetries
    Alvarez, M. J.
    Bravo, J. L.
    Fernandez, M.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 84 : 18 - 28
  • [36] LOWER BOUNDS FOR THE NUMBER OF ORBITAL TOPOLOGICAL TYPES OF PLANAR POLYNOMIAL VECTOR FIELDS "MODULO LIMIT CYCLES"
    Fedorov, Roman M.
    [J]. MOSCOW MATHEMATICAL JOURNAL, 2001, 1 (04) : 539 - 550
  • [37] UPPER BOUNDS FOR THE NUMBER OF LIMIT CYCLES OF POLYNOMIAL DIFFERENTIAL SYSTEMS
    Ellaggoune, Selma
    Badi, Sabrina
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2016,
  • [38] Characterization of the Existence of Non-trivial Limit Cycles for Generalized Abel Equations
    Alvarez, M. J.
    Bravo, J. L.
    Fernandez, M.
    Prohens, R.
    [J]. QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2021, 20 (01)
  • [39] Characterization of the Existence of Non-trivial Limit Cycles for Generalized Abel Equations
    M. J. Álvarez
    J. L. Bravo
    M. Fernández
    R. Prohens
    [J]. Qualitative Theory of Dynamical Systems, 2021, 20
  • [40] LIMIT CYCLES FOR SOME ABEL EQUATIONS HAVING COEFFICIENTS WITHOUT FIXED SIGNS
    Bravo, J. L.
    Fernandez, M.
    Gasull, A.
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2009, 19 (11): : 3869 - 3876