LIMIT CYCLES FOR SOME ABEL EQUATIONS HAVING COEFFICIENTS WITHOUT FIXED SIGNS

被引:28
|
作者
Bravo, J. L. [1 ]
Fernandez, M. [1 ]
Gasull, A. [2 ]
机构
[1] Univ Extremadura, Dept Matemat, E-06071 Badajoz, Spain
[2] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Spain
来源
关键词
Abel equation; periodic solution; limit cycle; TWO-DIMENSIONAL SYSTEMS; DIFFERENTIAL-EQUATIONS; PERIODIC-SOLUTIONS; CUBIC SYSTEMS; NUMBER; UNIQUENESS;
D O I
10.1142/S0218127409025195
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that some 2 pi-periodic generalized Abel equations of the form x' = A(t)x(n) + B(t)x(m) + C(t)x, with n not equal m and n, m >= 2 have at most three limit cycles. The novelty of our result is that, in contrast with other results of the literature, our hypotheses allow the functions A, B, and C to change sign. Finally we study in more detail the Abel equation x' = A(t)x(3) + B(t)x(2), where the functions A and B are trigonometric polynomials of degree one.
引用
收藏
页码:3869 / 3876
页数:8
相关论文
共 34 条
  • [1] On the rational limit cycles of Abel equations
    Liu, Changjian
    Li, Chunhui
    Wang, Xishun
    Wu, Junqiao
    [J]. CHAOS SOLITONS & FRACTALS, 2018, 110 : 28 - 32
  • [2] RATIONAL LIMIT CYCLES OF ABEL EQUATIONS
    Llibre, Jaume
    Valls, Claudia
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2021, 20 (03) : 1077 - 1089
  • [3] Maximum number of limit cycles for Abel equation having coefficients with linear trigonometric functions
    Yu, Xiangqin
    Huang, Jianfeng
    Liu, Changjian
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 410 : 301 - 318
  • [4] Alien limit cycles in Abel equations
    Alvarez, M. J.
    Bravo, J. L.
    Fernandez, M.
    Prohens, R.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 482 (01)
  • [5] Limit cycles for generalized Abel equations
    Gasull, Armengol
    Guillamon, Antoni
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2006, 16 (12): : 3737 - 3745
  • [6] THE NUMBER OF LIMIT CYCLES FOR GENERALIZED ABEL EQUATIONS WITH PERIODIC COEFFICIENTS OF DEFINITE SIGN
    Alvarez, Amelia
    Bravo, Jose-Luis
    Fernandez, Manuel
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2009, 8 (05) : 1493 - 1501
  • [7] Centers and limit cycles for a family of Abel equations
    Alvarez, M. J.
    Bravo, J. L.
    Fernandez, M.
    Prohens, R.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 453 (01) : 485 - 501
  • [8] STABILITY OF SINGULAR LIMIT CYCLES FOR ABEL EQUATIONS
    Luis Bravo, Jose
    Fernandez, Manuel
    Gasull, Armengol
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2015, 35 (05): : 1873 - 1890
  • [9] Rational Limit Cycles on Abel Polynomial Equations
    Valls, Claudia
    [J]. MATHEMATICS, 2020, 8 (06)
  • [10] Limit cycles of Abel equations of the first kind
    Alvarez, A.
    Bravo, J. L.
    Fernandez, M.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 423 (01) : 734 - 745