Limit cycles for generalized Abel equations

被引:38
|
作者
Gasull, Armengol [1 ]
Guillamon, Antoni
机构
[1] Univ Autonoma Barcelona, Edifici Cc, Dept Matemat, Bellaterra 08193, Barcelona, Spain
[2] Univ Politecn Cataluna, Dept Matemat Aplicada 1, E-08028 Barcelona, Spain
来源
关键词
Abel equation; limit cycles; planar differential equations;
D O I
10.1142/S0218127406017130
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper deals with the problem of finding upper bounds on the number of periodic solutions of a class of one-dimensional nonautonomous differential equations: those with the right-hand sides being polynomials of degree n and whose coefficient's are real smooth one-periodic functions. The case n = 3 gives the so-called Abel equations which have been thoroughly studied and are well understood. We consider two natural generalizations of Abel equations. Our results extend previous works of Lins Neto and Panov and try to step forward in the understanding of the case n > 3. They can be applied, as well, to control the number of limit cycles of some planar ordinary differential equations.
引用
收藏
页码:3737 / 3745
页数:9
相关论文
共 50 条
  • [1] On the Number of Limit Cycles in Generalized Abel Equations
    Huang, Jianfeng
    Torregrosa, Joan
    Villadelprat, Jordi
    [J]. SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2020, 19 (04): : 2343 - 2370
  • [2] On the rational limit cycles of Abel equations
    Liu, Changjian
    Li, Chunhui
    Wang, Xishun
    Wu, Junqiao
    [J]. CHAOS SOLITONS & FRACTALS, 2018, 110 : 28 - 32
  • [3] RATIONAL LIMIT CYCLES OF ABEL EQUATIONS
    Llibre, Jaume
    Valls, Claudia
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2021, 20 (03) : 1077 - 1089
  • [4] Alien limit cycles in Abel equations
    Alvarez, M. J.
    Bravo, J. L.
    Fernandez, M.
    Prohens, R.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 482 (01)
  • [5] Characterization of the Existence of Non-trivial Limit Cycles for Generalized Abel Equations
    Alvarez, M. J.
    Bravo, J. L.
    Fernandez, M.
    Prohens, R.
    [J]. QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2021, 20 (01)
  • [6] Characterization of the Existence of Non-trivial Limit Cycles for Generalized Abel Equations
    M. J. Álvarez
    J. L. Bravo
    M. Fernández
    R. Prohens
    [J]. Qualitative Theory of Dynamical Systems, 2021, 20
  • [7] THE NUMBER OF LIMIT CYCLES FOR GENERALIZED ABEL EQUATIONS WITH PERIODIC COEFFICIENTS OF DEFINITE SIGN
    Alvarez, Amelia
    Bravo, Jose-Luis
    Fernandez, Manuel
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2009, 8 (05) : 1493 - 1501
  • [8] The number of limit cycles in planar systems and generalized Abel equations with monotonous hyperbolicity
    Guillamon, Antoni
    Sabatini, Marco
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (5-6) : 1941 - 1949
  • [9] On the number of limit cycles of a generalized Abel equation
    Alkoumi, Naeem
    Torres, Pedro J.
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 2011, 61 (01) : 73 - 83
  • [10] On the number of limit cycles of a generalized Abel equation
    Naeem Alkoumi
    Pedro J. Torres
    [J]. Czechoslovak Mathematical Journal, 2011, 61 : 73 - 83