RATIONAL LIMIT CYCLES OF ABEL EQUATIONS

被引:3
|
作者
Llibre, Jaume [1 ]
Valls, Claudia [2 ]
机构
[1] Univ Autonoma Barcelona, Dept Matemat, Barcelona 08193, Catalonia, Spain
[2] Univ Lisbon, Dept Matemat, Inst Super Tecn, Av Rovisco Pais, P-1049001 Lisbon, Portugal
基金
欧盟地平线“2020”;
关键词
Algebraic limit cycles; rational limit cycles; Abel equations; NUMBER; COEFFICIENTS; EXISTENCE;
D O I
10.3934/cpaa.2021007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We deal with Abel equations dy/dx = A(x)y(2) + B(x)y(3), where A(x) and B(x) are real polynomials. We prove that these Abel equations can have at most two rational limit cycles and we characterize when this happens. Moreover we provide examples of these Abel equations with two nontrivial rational limit cycles.
引用
收藏
页码:1077 / 1089
页数:13
相关论文
共 50 条
  • [1] On the rational limit cycles of Abel equations
    Liu, Changjian
    Li, Chunhui
    Wang, Xishun
    Wu, Junqiao
    [J]. CHAOS SOLITONS & FRACTALS, 2018, 110 : 28 - 32
  • [2] Rational Limit Cycles on Abel Polynomial Equations
    Valls, Claudia
    [J]. MATHEMATICS, 2020, 8 (06)
  • [3] Rational limit cycles of Abel differential equations
    Luis Bravo, Jose
    Angel Calderon, Luis
    Ojeda, Ignacio
    [J]. ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2023, (47) : 1 - 13
  • [4] Alien limit cycles in Abel equations
    Alvarez, M. J.
    Bravo, J. L.
    Fernandez, M.
    Prohens, R.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 482 (01)
  • [5] Limit cycles for generalized Abel equations
    Gasull, Armengol
    Guillamon, Antoni
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2006, 16 (12): : 3737 - 3745
  • [6] Centers and limit cycles for a family of Abel equations
    Alvarez, M. J.
    Bravo, J. L.
    Fernandez, M.
    Prohens, R.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 453 (01) : 485 - 501
  • [7] Limit cycles of Abel equations of the first kind
    Alvarez, A.
    Bravo, J. L.
    Fernandez, M.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 423 (01) : 734 - 745
  • [8] STABILITY OF SINGULAR LIMIT CYCLES FOR ABEL EQUATIONS
    Luis Bravo, Jose
    Fernandez, Manuel
    Gasull, Armengol
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2015, 35 (05): : 1873 - 1890
  • [9] On the Number of Limit Cycles in Generalized Abel Equations
    Huang, Jianfeng
    Torregrosa, Joan
    Villadelprat, Jordi
    [J]. SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2020, 19 (04): : 2343 - 2370
  • [10] THE MULTIPLICITY OF ZERO AND LIMIT CYCLES FOR ABEL EQUATIONS
    ZHANG Xiang (Department of Mathematics
    [J]. Journal of Systems Science & Complexity, 2001, (02) : 165 - 173