Characterization of the Existence of Non-trivial Limit Cycles for Generalized Abel Equations

被引:1
|
作者
Alvarez, M. J. [1 ,2 ]
Bravo, J. L. [3 ]
Fernandez, M. [3 ]
Prohens, R. [1 ,2 ]
机构
[1] Univ Illes Balears, Dept Matemat & Informat, Palma De Mallorca 07122, Spain
[2] Univ Illes Balears, IAC3 Inst Appl Comp & Community Code, Palma De Mallorca 07122, Spain
[3] Univ Extremadura, Dept Matemat, Badajoz 06071, Spain
关键词
Limit cycles; Periodic orbits; Abel equation; PERIODIC-SOLUTIONS; DIFFERENTIAL-EQUATIONS; NUMBER; UNIQUENESS; CRITERION;
D O I
10.1007/s12346-021-00450-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the family of generalized Abel equations of the form x' = A(t)x(m) + B(t)x(n), where A, B are trigonometric polynomials and m, n is an element of N. We characterize the existence of non-trivial limit cycles in this family, in terms of the trigonometricmonomials.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Characterization of the Existence of Non-trivial Limit Cycles for Generalized Abel Equations
    M. J. Álvarez
    J. L. Bravo
    M. Fernández
    R. Prohens
    [J]. Qualitative Theory of Dynamical Systems, 2021, 20
  • [2] Existence of non-trivial limit cycles in Abel equations with symmetries
    Alvarez, M. J.
    Bravo, J. L.
    Fernandez, M.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 84 : 18 - 28
  • [3] Limit cycles for generalized Abel equations
    Gasull, Armengol
    Guillamon, Antoni
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2006, 16 (12): : 3737 - 3745
  • [4] THE EXISTENCE OF ONE NON-TRIVIAL WEAK SOLUTION OF GENERALIZED YAMABE EQUATIONS
    Bouali, T.
    Guefaifia, R.
    Choucha, A.
    Boulaaras, S.
    Abdalla, M.
    [J]. MISKOLC MATHEMATICAL NOTES, 2022, 23 (01) : 117 - 129
  • [5] On the Number of Limit Cycles in Generalized Abel Equations
    Huang, Jianfeng
    Torregrosa, Joan
    Villadelprat, Jordi
    [J]. SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2020, 19 (04): : 2343 - 2370
  • [6] EXISTENCE OF A NON-TRIVIAL SOLUTION FOR NONLINEAR DIFFERENCE EQUATIONS
    Moghadam, Mohsen Khaleghi
    Heidarkhani, Shapour
    [J]. DIFFERENTIAL EQUATIONS & APPLICATIONS, 2014, 6 (04): : 517 - 525
  • [7] Existence of non-trivial solutions for resonant difference equations
    Wang, Shuli
    Liu, Jinsheng
    Zhang, Jianming
    Zhang, Fuwei
    [J]. JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2013, 19 (02) : 209 - 222
  • [8] On the existence of non-trivial homoclinic classes
    Bonatti, Christian
    Gan, Shaobo
    Wen, Lan
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2007, 27 : 1473 - 1508
  • [9] Non-existence and uniqueness of limit cycles in a class of generalized Lienard equations
    Llibre, Jaume
    Valls, Claudia
    [J]. BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2022, 28 (02):