Existence of non-trivial limit cycles in Abel equations with symmetries

被引:16
|
作者
Alvarez, M. J. [1 ]
Bravo, J. L. [2 ]
Fernandez, M. [2 ]
机构
[1] Univ Illes Balears, Dept Matemat & Informat, Palma De Mallorca 07122, Spain
[2] Univ Extremadura, Dept Matemat, E-06071 Badajoz, Spain
关键词
Periodic solutions; Abel equation; Abelian integrals; Limit cycles; DIFFERENTIAL-EQUATIONS; UNIQUENESS; NUMBER;
D O I
10.1016/j.na.2013.02.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the periodic solutions of the generalized Abel equation x' = a(1)A(1)(t)x(n1) + a(2)A(2)(t)x(n2) + a(3)A(3)(t)x(n3), where n(1), n(2), n(3) > 1 are distinct integers, a(1), a(2), a(3) is an element of R, and A(1), A(2), A(3) are 2 pi-periodic analytic functions such that A(1)(t) sin t, A(2)(t) cos t, A(3)(t) sin t cos t are pi-periodic positive even functions. When (n(3) - n(1))(n(3) - n(2)) < 0 we prove that the equation has no non-trivial (different from zero) limit cycle for any value of the parameters a(1), a(2), a(3). When (n(3) - n(1))(n(3) - n(2)) > 0 we obtain under additional conditions the existence of non-trivial limit cycles. In particular, we obtain limit cycles not detected by Abelian integrals. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:18 / 28
页数:11
相关论文
共 50 条
  • [1] Characterization of the Existence of Non-trivial Limit Cycles for Generalized Abel Equations
    Alvarez, M. J.
    Bravo, J. L.
    Fernandez, M.
    Prohens, R.
    [J]. QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2021, 20 (01)
  • [2] Characterization of the Existence of Non-trivial Limit Cycles for Generalized Abel Equations
    M. J. Álvarez
    J. L. Bravo
    M. Fernández
    R. Prohens
    [J]. Qualitative Theory of Dynamical Systems, 2021, 20
  • [3] EXISTENCE OF A NON-TRIVIAL SOLUTION FOR NONLINEAR DIFFERENCE EQUATIONS
    Moghadam, Mohsen Khaleghi
    Heidarkhani, Shapour
    [J]. DIFFERENTIAL EQUATIONS & APPLICATIONS, 2014, 6 (04): : 517 - 525
  • [4] Existence of non-trivial solutions for resonant difference equations
    Wang, Shuli
    Liu, Jinsheng
    Zhang, Jianming
    Zhang, Fuwei
    [J]. JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2013, 19 (02) : 209 - 222
  • [5] THE EXISTENCE OF ONE NON-TRIVIAL WEAK SOLUTION OF GENERALIZED YAMABE EQUATIONS
    Bouali, T.
    Guefaifia, R.
    Choucha, A.
    Boulaaras, S.
    Abdalla, M.
    [J]. MISKOLC MATHEMATICAL NOTES, 2022, 23 (01) : 117 - 129
  • [6] On the existence of non-trivial homoclinic classes
    Bonatti, Christian
    Gan, Shaobo
    Wen, Lan
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2007, 27 : 1473 - 1508
  • [7] On the rational limit cycles of Abel equations
    Liu, Changjian
    Li, Chunhui
    Wang, Xishun
    Wu, Junqiao
    [J]. CHAOS SOLITONS & FRACTALS, 2018, 110 : 28 - 32
  • [8] RATIONAL LIMIT CYCLES OF ABEL EQUATIONS
    Llibre, Jaume
    Valls, Claudia
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2021, 20 (03) : 1077 - 1089
  • [9] Alien limit cycles in Abel equations
    Alvarez, M. J.
    Bravo, J. L.
    Fernandez, M.
    Prohens, R.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 482 (01)
  • [10] Limit cycles for generalized Abel equations
    Gasull, Armengol
    Guillamon, Antoni
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2006, 16 (12): : 3737 - 3745