THE EXISTENCE OF ONE NON-TRIVIAL WEAK SOLUTION OF GENERALIZED YAMABE EQUATIONS

被引:2
|
作者
Bouali, T. [1 ,2 ]
Guefaifia, R. [2 ]
Choucha, A. [3 ]
Boulaaras, S. [4 ]
Abdalla, M. [5 ,6 ]
机构
[1] Jazen Univ, Dept Math, Coll Sci, POB 277, Jazen, Saudi Arabia
[2] Larbi Tebessi Univ, Lab Math Informat & Syst, Tebessa 12000, Algeria
[3] Univ El Oued, Fac Exact Sci, Dept Math, Lab Operator Theory & PDEs Fdn & Applicat, Box 789, El Oued 39000, Algeria
[4] Qassim Univ, Dept Math, Coll Arts & Sci, ArRass, Buraydah, Saudi Arabia
[5] King Khalid Univ, Coll Sci, Dept Math, Abha 61413, Saudi Arabia
[6] South Valley Univ, Dept Math, Fac Sci, Qena 83523, Egypt
关键词
Yamabe problem; Emden-Fowler equation; sublinear eigenvalue problem; one non-trivial solutions; Riemannian manifolds; COMPACT RIEMANNIAN-MANIFOLDS;
D O I
10.18514/MMN.2022.3751
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, we study the nonlinear problem on compact d-dimensional (d >= 3) Riemannian manifolds with respect to absence of boundary. The existence of one non-trivial weak solution is established, and its application to solve Emden-Fowler equations which contain infinity nonlinear terms. We also introduce an example to illustrate the results obtained, which can be applied to many of the problems resulting in astrophysics, conformal Riemannian geometry, gas combustion, isothermal stationary gas sphere and in the theory of thermionic emission.
引用
收藏
页码:117 / 129
页数:13
相关论文
共 50 条
  • [1] EXISTENCE OF A NON-TRIVIAL SOLUTION FOR NONLINEAR DIFFERENCE EQUATIONS
    Moghadam, Mohsen Khaleghi
    Heidarkhani, Shapour
    [J]. DIFFERENTIAL EQUATIONS & APPLICATIONS, 2014, 6 (04): : 517 - 525
  • [2] Characterization of the Existence of Non-trivial Limit Cycles for Generalized Abel Equations
    Alvarez, M. J.
    Bravo, J. L.
    Fernandez, M.
    Prohens, R.
    [J]. QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2021, 20 (01)
  • [3] Characterization of the Existence of Non-trivial Limit Cycles for Generalized Abel Equations
    M. J. Álvarez
    J. L. Bravo
    M. Fernández
    R. Prohens
    [J]. Qualitative Theory of Dynamical Systems, 2021, 20
  • [4] Existence of non-trivial solution for superlinear system of integral equations and its applications
    Zhang Zhitao
    [J]. Acta Mathematicae Applicatae Sinica, 1999, 15 (2) : 153 - 162
  • [6] Existence of non-trivial solutions for resonant difference equations
    Wang, Shuli
    Liu, Jinsheng
    Zhang, Jianming
    Zhang, Fuwei
    [J]. JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2013, 19 (02) : 209 - 222
  • [7] Existence of non-trivial limit cycles in Abel equations with symmetries
    Alvarez, M. J.
    Bravo, J. L.
    Fernandez, M.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 84 : 18 - 28
  • [8] On the existence of non-trivial homoclinic classes
    Bonatti, Christian
    Gan, Shaobo
    Wen, Lan
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2007, 27 : 1473 - 1508
  • [9] Existence of non-trivial solution for a class of modified Schrodinger-Poisson equations via perturbation method
    Feng, Xiaojing
    Zhang, Xing
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 442 (02) : 673 - 684
  • [10] Existence of a non-trivial solution for fourth-order elastic beam equations involving Lipschitz non-linearity
    Moghadam, Mohsen Khaleghi
    [J]. COGENT MATHEMATICS, 2016, 3