EXISTENCE OF A NON-TRIVIAL SOLUTION FOR NONLINEAR DIFFERENCE EQUATIONS

被引:8
|
作者
Moghadam, Mohsen Khaleghi [1 ]
Heidarkhani, Shapour [2 ]
机构
[1] Agr & Nat Source Univ, Dept Basic Sci, Sari, Iran
[2] Razi Univ, Fac Sci, Dept Math, Kermanshah 67149, Iran
来源
关键词
discrete nonlinear boundary value problem; non trivial solution; variational methods; critical point theory;
D O I
10.7153/dea-06-30
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The existence of a non-trivial solution for a discrete non-linear Dirichlet problem involving p-Laplacian is investigated. The technical approach is based on a local minimum theorem for differentiable functionals due to Bonanno.
引用
收藏
页码:517 / 525
页数:9
相关论文
共 50 条
  • [1] Existence of non-trivial solutions for resonant difference equations
    Wang, Shuli
    Liu, Jinsheng
    Zhang, Jianming
    Zhang, Fuwei
    [J]. JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2013, 19 (02) : 209 - 222
  • [2] THE EXISTENCE OF ONE NON-TRIVIAL WEAK SOLUTION OF GENERALIZED YAMABE EQUATIONS
    Bouali, T.
    Guefaifia, R.
    Choucha, A.
    Boulaaras, S.
    Abdalla, M.
    [J]. MISKOLC MATHEMATICAL NOTES, 2022, 23 (01) : 117 - 129
  • [3] Existence of non-trivial solutions for nonlinear fractional Schrodinger-Poisson equations
    Li, Kexue
    [J]. APPLIED MATHEMATICS LETTERS, 2017, 72 : 1 - 9
  • [4] Existence of non-trivial solution for superlinear system of integral equations and its applications
    Zhang Zhitao
    [J]. Acta Mathematicae Applicatae Sinica, 1999, 15 (2) : 153 - 162
  • [6] Existence of non-trivial limit cycles in Abel equations with symmetries
    Alvarez, M. J.
    Bravo, J. L.
    Fernandez, M.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 84 : 18 - 28
  • [7] On the existence of non-trivial homoclinic classes
    Bonatti, Christian
    Gan, Shaobo
    Wen, Lan
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2007, 27 : 1473 - 1508
  • [8] Characterization of the Existence of Non-trivial Limit Cycles for Generalized Abel Equations
    Alvarez, M. J.
    Bravo, J. L.
    Fernandez, M.
    Prohens, R.
    [J]. QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2021, 20 (01)
  • [9] Characterization of the Existence of Non-trivial Limit Cycles for Generalized Abel Equations
    M. J. Álvarez
    J. L. Bravo
    M. Fernández
    R. Prohens
    [J]. Qualitative Theory of Dynamical Systems, 2021, 20
  • [10] Existence of non-trivial solution for a class of modified Schrodinger-Poisson equations via perturbation method
    Feng, Xiaojing
    Zhang, Xing
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 442 (02) : 673 - 684