Parametric Centers for Trigonometric Abel Equations

被引:0
|
作者
Jean-Pierre Françoise
机构
[1] CNRS,Laboratoire J.
[2] Université P.-M. Curie,L. Lions, UMR 7598
[3] Paris6,undefined
关键词
Center; Perturbation theory; Abel equations; Primary 34C29; 34C25; 58F22;
D O I
暂无
中图分类号
学科分类号
摘要
This article is devoted to one-dimensional perturbative theory on R × S1. There is a recursive formula for the successive obstructions to parametric center at any order of the perturbation parameter. The first obstruction is studied by means of complex analysis techniques. This extends to the trigonometric case what was done previously for the polynomial case (Israel J. Math. 142, 273–283, 2004).
引用
收藏
页码:777 / 786
页数:9
相关论文
共 50 条
  • [1] Parametric Centers for Trigonometric Abel Equations
    Francoise, Jean-Pierre
    [J]. JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2008, 20 (04) : 777 - 786
  • [2] Centers for Trigonometric Abel Equations
    Cima, Anna
    Gasull, Armengol
    Manosas, Francesc
    [J]. QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2012, 11 (01) : 19 - 37
  • [3] Centers for Trigonometric Abel Equations
    Anna Cima
    Armengol Gasull
    Francesc Mañosas
    [J]. Qualitative Theory of Dynamical Systems, 2012, 11 : 19 - 37
  • [4] Universal centers in the cubic trigonometric Abel equation
    Gine, Jaume
    Grau, Maite
    Santallusia, Xavier
    [J]. ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2014, (01) : 1 - 7
  • [5] TRIGONOMETRIC POLYNOMIAL SOLUTIONS OF EQUIVARIANT TRIGONOMETRIC POLYNOMIAL ABEL DIFFERENTIAL EQUATIONS
    Valls, Claudia
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2017,
  • [6] Rational solutions of Abel trigonometric polynomial differential equations
    Valls, Claudia
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2022, 180
  • [7] Centers of planar generalized Abel equations
    Llibre, Jaume
    Valls, Claudia
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (10) : 6481 - 6487
  • [8] Lower bounds for the number of limit cycles of trigonometric Abel equations
    Alvarez, M. J.
    Gasull, A.
    Yu, J.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 342 (01) : 682 - 693
  • [9] Centers and limit cycles for a family of Abel equations
    Alvarez, M. J.
    Bravo, J. L.
    Fernandez, M.
    Prohens, R.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 453 (01) : 485 - 501
  • [10] WORD PROBLEMS AND THE CENTERS OF ABEL DIFFERENTIAL EQUATIONS
    M.A.M.Alwash(University of California
    [J]. Annals of Applied Mathematics, 1995, (04) : 392 - 396