Centers of planar generalized Abel equations

被引:3
|
作者
Llibre, Jaume [1 ]
Valls, Claudia [2 ]
机构
[1] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Catalonia, Spain
[2] Univ Lisbon, Inst Super Tecn, Dept Matemat, Av Rovisco Pais 1049-001, Lisbon, Portugal
基金
欧盟地平线“2020”;
关键词
Centers; Generalized Abel equations;
D O I
10.1016/j.jde.2019.11.0460022
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We deal with the differential equation r over dot = dr/dB = a(theta)r(n) + b(theta)r(m), where (r, 0) are the polar coordinates in the plane R-2, m and n are integers such that m > n >= 2, and a, b are C-1 functions. Note that when n = 2 and m = 3 we have an Abel differential equation. For this class of generalized Abel equations we characterize a new family of centers. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:6481 / 6487
页数:7
相关论文
共 50 条
  • [1] Centers for Trigonometric Abel Equations
    Anna Cima
    Armengol Gasull
    Francesc Mañosas
    Qualitative Theory of Dynamical Systems, 2012, 11 : 19 - 37
  • [2] Centers for Trigonometric Abel Equations
    Cima, Anna
    Gasull, Armengol
    Manosas, Francesc
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2012, 11 (01) : 19 - 37
  • [3] PLANAR SYSTEMS AND ABEL EQUATIONS
    Alvarez, Amelia
    Luis Bravo, Jose
    Sanchez, Fernando
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2022, 21 (10) : 3463 - 3478
  • [4] The number of limit cycles in planar systems and generalized Abel equations with monotonous hyperbolicity
    Guillamon, Antoni
    Sabatini, Marco
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (5-6) : 1941 - 1949
  • [5] SYSTEMS OF GENERALIZED ABEL EQUATIONS
    LOWENGRUB, M
    WALTON, J
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1979, 10 (04) : 794 - 807
  • [6] Parametric Centers for Trigonometric Abel Equations
    Francoise, Jean-Pierre
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2008, 20 (04) : 777 - 786
  • [7] Parametric Centers for Trigonometric Abel Equations
    Jean-Pierre Françoise
    Journal of Dynamics and Differential Equations, 2008, 20 : 777 - 786
  • [8] On the Center Problem for Generalized Abel Equations
    Chang Jian LIU
    Shao Qing WANG
    ActaMathematicaSinica,EnglishSeries, 2023, (12) : 2329 - 2337
  • [9] On the Center Problem for Generalized Abel Equations
    Chang Jian Liu
    Shao Qing Wang
    Acta Mathematica Sinica, English Series, 2023, 39 : 2329 - 2337
  • [10] On the Center Problem for Generalized Abel Equations
    Liu, Chang Jian
    Wang, Shao Qing
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2023, 39 (12) : 2329 - 2337