Centers of planar generalized Abel equations

被引:3
|
作者
Llibre, Jaume [1 ]
Valls, Claudia [2 ]
机构
[1] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Catalonia, Spain
[2] Univ Lisbon, Inst Super Tecn, Dept Matemat, Av Rovisco Pais 1049-001, Lisbon, Portugal
基金
欧盟地平线“2020”;
关键词
Centers; Generalized Abel equations;
D O I
10.1016/j.jde.2019.11.0460022
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We deal with the differential equation r over dot = dr/dB = a(theta)r(n) + b(theta)r(m), where (r, 0) are the polar coordinates in the plane R-2, m and n are integers such that m > n >= 2, and a, b are C-1 functions. Note that when n = 2 and m = 3 we have an Abel differential equation. For this class of generalized Abel equations we characterize a new family of centers. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:6481 / 6487
页数:7
相关论文
共 50 条
  • [42] Shifted Chebyshev Polynomials for a Generalized Abel-Volterra-Fredholm integral equations
    Nadir, Mohamed Nasseh
    Jawahdou, Adel
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2024, 63 : 9 - 16
  • [43] A numerical approach for solving generalized Abel-type nonlinear differential equations
    Bulbul, Berna
    Sezer, Mehmet
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 262 : 169 - 177
  • [44] Solutions of the Generalized Abel's Integral Equations of the Second Kind with Variable Coefficients
    Li, Chenkuan
    Plowman, Hunter
    AXIOMS, 2019, 8 (04)
  • [45] THE NUMBER OF LIMIT CYCLES FOR GENERALIZED ABEL EQUATIONS WITH PERIODIC COEFFICIENTS OF DEFINITE SIGN
    Alvarez, Amelia
    Bravo, Jose-Luis
    Fernandez, Manuel
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2009, 8 (05) : 1493 - 1501
  • [46] Characterization of the Existence of Non-trivial Limit Cycles for Generalized Abel Equations
    Alvarez, M. J.
    Bravo, J. L.
    Fernandez, M.
    Prohens, R.
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2021, 20 (01)
  • [47] Characterization of the Existence of Non-trivial Limit Cycles for Generalized Abel Equations
    M. J. Álvarez
    J. L. Bravo
    M. Fernández
    R. Prohens
    Qualitative Theory of Dynamical Systems, 2021, 20
  • [48] Homotopy Perturbation Method for Solving System of Generalized Abel's Integral Equations
    Kumar, Sunil
    Singh, Om P.
    Dixit, Sandeep
    APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL, 2011, 6 (01): : 268 - 283
  • [49] Generalized Results on Existence & Uniqueness with Wronskian and Abel Formula for α-Fractional Differential Equations
    Muneshwar, R. A.
    Bondar, K. L.
    Mathpati, V. D.
    Shirole, Y. H.
    MATHEMATICS AND COMPUTING, ICMC 2022, 2022, 415 : 363 - 378
  • [50] Simultaneous Abel equations
    Hojjat Farzadfard
    B. Khani Robati
    Aequationes mathematicae, 2012, 83 : 283 - 294