Centers of planar generalized Abel equations

被引:3
|
作者
Llibre, Jaume [1 ]
Valls, Claudia [2 ]
机构
[1] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Catalonia, Spain
[2] Univ Lisbon, Inst Super Tecn, Dept Matemat, Av Rovisco Pais 1049-001, Lisbon, Portugal
基金
欧盟地平线“2020”;
关键词
Centers; Generalized Abel equations;
D O I
10.1016/j.jde.2019.11.0460022
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We deal with the differential equation r over dot = dr/dB = a(theta)r(n) + b(theta)r(m), where (r, 0) are the polar coordinates in the plane R-2, m and n are integers such that m > n >= 2, and a, b are C-1 functions. Note that when n = 2 and m = 3 we have an Abel differential equation. For this class of generalized Abel equations we characterize a new family of centers. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:6481 / 6487
页数:7
相关论文
共 50 条
  • [11] THE GENERALIZED ABEL EQUATIONS FOR SCHWARTZ DISTRIBUTIONS
    ORTON, M
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1980, 11 (03) : 596 - 611
  • [12] Limit cycles for generalized Abel equations
    Gasull, Armengol
    Guillamon, Antoni
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2006, 16 (12): : 3737 - 3745
  • [13] Centers and limit cycles for a family of Abel equations
    Alvarez, M. J.
    Bravo, J. L.
    Fernandez, M.
    Prohens, R.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 453 (01) : 485 - 501
  • [14] WORD PROBLEMS AND THE CENTERS OF ABEL DIFFERENTIAL EQUATIONS
    M.A.M.Alwash(University of California
    ANNALS OF DIFFERENTIAL EQUATIONS, 1995, (04) : 392 - 396
  • [15] A NOTE ON GENERALIZED ABEL EQUATIONS WITH CONSTANT COEFFICIENTS
    Li, Yulong
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2022, 51 (05) : 1749 - 1760
  • [16] Generalized Weierstrass Integrability of the Abel Differential Equations
    Llibre, Jaume
    Valls, Claudia
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2013, 10 (04) : 1749 - 1760
  • [17] The Equivalence Problem for the Class of Generalized Abel Equations
    O. I. Morozov
    Differential Equations, 2003, 39 : 460 - 461
  • [18] Generalized Weierstrass Integrability of the Abel Differential Equations
    Jaume Llibre
    Clàudia Valls
    Mediterranean Journal of Mathematics, 2013, 10 : 1749 - 1760
  • [19] The equivalence problem for the class of generalized Abel equations
    Morozov, OI
    DIFFERENTIAL EQUATIONS, 2003, 39 (03) : 460 - 461
  • [20] On the Number of Limit Cycles in Generalized Abel Equations
    Huang, Jianfeng
    Torregrosa, Joan
    Villadelprat, Jordi
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2020, 19 (04): : 2343 - 2370