Lower bounds for the number of limit cycles of trigonometric Abel equations

被引:16
|
作者
Alvarez, M. J. [1 ]
Gasull, A. [2 ]
Yu, J. [3 ]
机构
[1] Univ Illes Balears, Dept Math & Informat, Palma de Mallorca 07122, Spain
[2] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Spain
[3] Shanghai Jiao Tong Univ, Dept Math, Shanghai 200240, Peoples R China
关键词
Abel equation; periodic orbit; Melnikov functions;
D O I
10.1016/j.jmaa.2007.12.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Abel equation (x) over dot = A(t)x(3) + B(t)x(2), where A(t) and B(t) are trigonometric polynomials of degree n and m, respectively, and we give lower bounds for its number of isolated periodic orbits for some values of n and m. These lower bounds are obtained by two different methods: the study of the perturbations of some Abel equations having a continuum of periodic orbits and the Hopf-type bifurcation of periodic orbits from the solution x = 0. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:682 / 693
页数:12
相关论文
共 50 条
  • [1] On the Number of Limit Cycles in Generalized Abel Equations
    Huang, Jianfeng
    Torregrosa, Joan
    Villadelprat, Jordi
    [J]. SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2020, 19 (04): : 2343 - 2370
  • [2] Upper bounds of limit cycles in Abel differential equations with invariant curves
    Bravo, J. L.
    Calderon, L. A.
    Fernandez, M.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 494 (01)
  • [3] Maximum number of limit cycles for Abel equation having coefficients with linear trigonometric functions
    Yu, Xiangqin
    Huang, Jianfeng
    Liu, Changjian
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 410 : 301 - 318
  • [4] On the rational limit cycles of Abel equations
    Liu, Changjian
    Li, Chunhui
    Wang, Xishun
    Wu, Junqiao
    [J]. CHAOS SOLITONS & FRACTALS, 2018, 110 : 28 - 32
  • [5] RATIONAL LIMIT CYCLES OF ABEL EQUATIONS
    Llibre, Jaume
    Valls, Claudia
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2021, 20 (03) : 1077 - 1089
  • [6] Alien limit cycles in Abel equations
    Alvarez, M. J.
    Bravo, J. L.
    Fernandez, M.
    Prohens, R.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 482 (01)
  • [7] Limit cycles for generalized Abel equations
    Gasull, Armengol
    Guillamon, Antoni
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2006, 16 (12): : 3737 - 3745
  • [8] THE NUMBER OF LIMIT CYCLES FOR GENERALIZED ABEL EQUATIONS WITH PERIODIC COEFFICIENTS OF DEFINITE SIGN
    Alvarez, Amelia
    Bravo, Jose-Luis
    Fernandez, Manuel
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2009, 8 (05) : 1493 - 1501
  • [9] The number of limit cycles in planar systems and generalized Abel equations with monotonous hyperbolicity
    Guillamon, Antoni
    Sabatini, Marco
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (5-6) : 1941 - 1949
  • [10] On the number of limit cycles of a generalized Abel equation
    Alkoumi, Naeem
    Torres, Pedro J.
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 2011, 61 (01) : 73 - 83