Energy landscapes for a machine-learning prediction of patient discharge

被引:14
|
作者
Das, Ritankar [1 ]
Wales, David J. [1 ]
机构
[1] Univ Chem Labs, Lensfield Rd, Cambridge CB2 1EW, England
基金
英国工程与自然科学研究理事会;
关键词
MONTE-CARLO; KINETICS; SURFACES; CLUSTERS; PEPTIDE; THERMODYNAMICS; MINIMIZATION; COEXISTENCE; NETWORKS; LIQUIDS;
D O I
10.1103/PhysRevE.93.063310
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The energy landscapes framework is applied to a configuration space generated by training the parameters of a neural network. In this study the input data consists of time series for a collection of vital signs monitored for hospital patients, and the outcomes are patient discharge or continued hospitalisation. Using machine learning as a predictive diagnostic tool to identify patterns in large quantities of electronic health record data in real time is a very attractive approach for supporting clinical decisions, which have the potential to improve patient outcomes and reduce waiting times for discharge. Here we report some preliminary analysis to show how machine learning might be applied. In particular, we visualize the fitting landscape in terms of locally optimal neural networks and the connections between them in parameter space. We anticipate that these results, and analogues of thermodynamic properties for molecular systems, may help in the future design of improved predictive tools.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Machine-Learning Aided Peer Prediction
    Liu, Yang
    Chen, Yiling
    [J]. EC'17: PROCEEDINGS OF THE 2017 ACM CONFERENCE ON ECONOMICS AND COMPUTATION, 2017, : 63 - 80
  • [2] Energy landscapes for machine learning
    Ballard, Andrew J.
    Das, Ritankar
    Martiniani, Stefano
    Mehta, Dhagash
    Sagun, Levent
    Stevenson, Jacob D.
    Wales, David J.
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2017, 19 (20) : 12585 - 12603
  • [3] Prediction of cholinergic compounds by machine-learning
    Wijeyesakere, Sanjeeva J.
    Wilson, Daniel M.
    Sue Marty, Mary
    [J]. Computational Toxicology, 2020, 13
  • [4] Prediction of Bond Dissociation Energy for Organic Molecules Based on a Machine-Learning Approach
    Liu, Yidi
    Li, Yao
    Yang, Qi
    Yang, Jin-Dong
    Zhang, Long
    Luo, Sanzhong
    [J]. CHINESE JOURNAL OF CHEMISTRY, 2024, 42 (17) : 1967 - 1974
  • [5] Groundwater Prediction Using Machine-Learning Tools
    Hussein, Eslam A.
    Thron, Christopher
    Ghaziasgar, Mehrdad
    Bagula, Antoine
    Vaccari, Mattia
    [J]. ALGORITHMS, 2020, 13 (11)
  • [6] Advancing interpretability of machine-learning prediction models
    Trenary, Laurie
    DelSole, Timothy
    [J]. ENVIRONMENTAL DATA SCIENCE, 2022, 1
  • [7] Anxiety onset in adolescents: a machine-learning prediction
    Alice V. Chavanne
    Marie Laure Paillère Martinot
    Jani Penttilä
    Yvonne Grimmer
    Patricia Conrod
    Argyris Stringaris
    Betteke van Noort
    Corinna Isensee
    Andreas Becker
    Tobias Banaschewski
    Arun L. W. Bokde
    Sylvane Desrivières
    Herta Flor
    Antoine Grigis
    Hugh Garavan
    Penny Gowland
    Andreas Heinz
    Rüdiger Brühl
    Frauke Nees
    Dimitri Papadopoulos Orfanos
    Tomáš Paus
    Luise Poustka
    Sarah Hohmann
    Sabina Millenet
    Juliane H. Fröhner
    Michael N. Smolka
    Henrik Walter
    Robert Whelan
    Gunter Schumann
    Jean-Luc Martinot
    Eric Artiges
    [J]. Molecular Psychiatry, 2023, 28 : 639 - 646
  • [8] A machine-learning algorithm for wind gust prediction
    Sallis, P. J.
    Claster, W.
    Hernandez, S.
    [J]. COMPUTERS & GEOSCIENCES, 2011, 37 (09) : 1337 - 1344
  • [9] Anxiety onset in adolescents: a machine-learning prediction
    Chavanne, Alice
    Paillere Martinot, Marie Laure
    Penttilae, Jani
    Grimmer, Yvonne
    Conrod, Patricia
    Stringaris, Argyris
    van Noort, Betteke
    Isensee, Corinna
    Becker, Andreas
    Banaschewski, Tobias
    Bokde, Arun L. W.
    Desrivieres, Sylvane
    Flor, Herta
    Grigis, Antoine
    Garavan, Hugh
    Gowland, Penny
    Heinz, Andreas
    Bruehl, Ruediger
    Nees, Frauke
    Orfanos, Dimitri Papadopoulos
    Paus, Tomas
    Poustka, Luise
    Hohmann, Sarah S.
    Millenet, Sabina
    Froehner, Juliane
    Smolka, Michael
    Walter, Henrik
    Whelan, Robert
    Schumann, Gunter
    Martinot, Jean-Luc
    Artiges, Eric
    [J]. MOLECULAR PSYCHIATRY, 2023, 28 (02) : 639 - 646
  • [10] Machine-learning methodology for energy efficient routing
    Masikos, Michail
    Demestichas, Konstantinos
    Adamopoulou, Evgenia
    Theologou, Michael
    [J]. IET INTELLIGENT TRANSPORT SYSTEMS, 2014, 8 (03) : 255 - 265