Anxiety onset in adolescents: a machine-learning prediction

被引:4
|
作者
Chavanne, Alice [1 ,2 ]
Paillere Martinot, Marie Laure [1 ,3 ]
Penttilae, Jani [4 ]
Grimmer, Yvonne [5 ]
Conrod, Patricia [6 ]
Stringaris, Argyris [7 ]
van Noort, Betteke [8 ]
Isensee, Corinna [9 ]
Becker, Andreas [9 ]
Banaschewski, Tobias [5 ]
Bokde, Arun L. W. [10 ,11 ]
Desrivieres, Sylvane [12 ]
Flor, Herta [13 ,14 ]
Grigis, Antoine [15 ]
Garavan, Hugh [16 ,17 ]
Gowland, Penny [18 ]
Heinz, Andreas [19 ,20 ]
Bruehl, Ruediger [21 ,22 ]
Nees, Frauke [5 ,23 ]
Orfanos, Dimitri Papadopoulos [15 ]
Paus, Tomas [24 ]
Poustka, Luise [9 ]
Hohmann, Sarah S. [5 ]
Millenet, Sabina [5 ]
Froehner, Juliane [25 ]
Smolka, Michael [25 ]
Walter, Henrik [19 ,20 ]
Whelan, Robert [26 ]
Schumann, Gunter [27 ,28 ]
Martinot, Jean-Luc [1 ]
Artiges, Eric [1 ,29 ]
机构
[1] Univ Paris Saclay, Ecole Normale Super Paris Saclay, Inst Natl Sante & Rech Med, Ctr Borelli,INSERM U1299 Trajectories Dev Psychiat, Gif Sur Yvette, France
[2] Humboldt Univ, Dept Psychol, Berlin, Germany
[3] Sorbonne Univ, Pitie Salpetriere Hosp, Dept Child & Adolescent Psychiat, AP HP, Paris, France
[4] Psychosocial Serv Adolescent Outpatient Clin, Dept Social & Hlth Care, Kauppakatu 14, Lahti, Finland
[5] Heidelberg Univ, Cent Inst Mental Hlth, Med Fac Mannheim, Dept Child & Adolescent Psychiat & Psychotherapy, Mannheim, Germany
[6] Univ Montreal, CHU Sainte Justine Hosp, Dept Psychiat, Montreal, PQ, Canada
[7] UCL, Div Psychiat, London, England
[8] Charite Univ Med Berlin, Dept Child & Adolescent Psychiat Psychosomat & Psy, Campus Charite Mitte, Charite Pl 1, Berlin, Germany
[9] Univ Med Ctr, Dept Child & Adolescent Psychiat & Psychotherapy, von Siebold Str 5, D-37075 Gottingen, Germany
[10] Trinity Coll Inst Neurosci, Sch Med, Discipline Psychiat, Dublin, Ireland
[11] Trinity Coll Dublin, Trinity Coll Inst Neurosci, Dublin, Ireland
[12] Kings Coll London, Inst Psychiat Psychol & Neurosci, Ctr Populat Neurosci andPrecis Med PONS, Social Genet & Dev Psychiat Ctr, London, England
[13] Heidelberg Univ, Inst Cognit & Clin Neurosci, Cent Inst Mental Hlth, Med Fac Mannheim, Sq J5, Mannheim, Germany
[14] Univ Mannheim, Sch Social Sci, Dept Psychol, D-68131 Mannheim, Germany
[15] Univ Paris Saclay, NeuroSpin, CEA, F-91191 Gif Sur Yvette, France
[16] Univ Vermont, Dept Psychiat, Burlington, VT 05405 USA
[17] Univ Vermont, Dept Psychol, Burlington, VT 05405 USA
[18] Univ Nottingham, Sir Peter Mansfield Imaging Ctr, Sch Phys & Astron, Univ Pk, Nottingham, Nottinghamshire, England
[19] Charite, Humboldt Univ Berlin, Freie Univ Berlin, Dept Psychiat & Psychotherapy CCM, Berlin, Germany
[20] Berlin Inst Hlth, Berlin, Germany
[21] Phys Tech Bundesanstalt PTB, Braunschweig, Germany
[22] Phys Tech Bundesanstalt PTB, Berlin, Germany
[23] Univ Kiel, Univ Med Ctr Schleswig Holstein, Inst Med Psychol & Med Sociol, Kiel, Germany
[24] Univ Montreal, Fac Med, CHU Sainte Justine Res Ctr, Dept Psychiat & Neurosci, Montreal, PQ, Canada
[25] Tech Univ Dresden, Med Fac, Sect Syst Neurosci, Dresden, Germany
[26] Trinity Coll Dublin, Global Brain Hlth Inst, Sch Psychol, Dublin, Ireland
[27] Fudan Univ Shanghai, ISTBI, Ctr Populat Neurosci & Stratified Med PONS, Berlin, Germany
[28] Charite, Dept Psychiat & Neurosci, Berlin, Germany
[29] EPS Barthelemy Durand, Dept Psychiat, Etampes, France
基金
欧盟地平线“2020”; 美国国家卫生研究院; 英国医学研究理事会; 爱尔兰科学基金会;
关键词
PERIAQUEDUCTAL GRAY; MENTAL-DISORDERS; BRAIN-FUNCTION; RISK; CHILDREN; PSYCHOPATHOLOGY; CLASSIFICATION; QUESTIONNAIRE; METAANALYSIS; COMORBIDITY;
D O I
10.1038/s41380-022-01840-z
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Recent longitudinal studies in youth have reported MRI correlates of prospective anxiety symptoms during adolescence, a vulnerable period for the onset of anxiety disorders. However, their predictive value has not been established. Individual prediction through machine-learning algorithms might help bridge the gap to clinical relevance. A voting classifier with Random Forest, Support Vector Machine and Logistic Regression algorithms was used to evaluate the predictive pertinence of gray matter volumes of interest and psychometric scores in the detection of prospective clinical anxiety. Participants with clinical anxiety at age 18-23 (N = 156) were investigated at age 14 along with healthy controls (N = 424). Shapley values were extracted for in-depth interpretation of feature importance. Prospective prediction of pooled anxiety disorders relied mostly on psychometric features and achieved moderate performance (area under the receiver operating curve = 0.68), while generalized anxiety disorder (GAD) prediction achieved similar performance. MRI regional volumes did not improve the prediction performance of prospective pooled anxiety disorders with respect to psychometric features alone, but they improved the prediction performance of GAD, with the caudate and pallidum volumes being among the most contributing features. To conclude, in non-anxious 14 year old adolescents, future clinical anxiety onset 4-8 years later could be individually predicted. Psychometric features such as neuroticism, hopelessness and emotional symptoms were the main contributors to pooled anxiety disorders prediction. Neuroanatomical data, such as caudate and pallidum volume, proved valuable for GAD and should be included in prospective clinical anxiety prediction in adolescents.
引用
收藏
页码:639 / 646
页数:8
相关论文
共 50 条
  • [1] Anxiety onset in adolescents: a machine-learning prediction
    Alice V. Chavanne
    Marie Laure Paillère Martinot
    Jani Penttilä
    Yvonne Grimmer
    Patricia Conrod
    Argyris Stringaris
    Betteke van Noort
    Corinna Isensee
    Andreas Becker
    Tobias Banaschewski
    Arun L. W. Bokde
    Sylvane Desrivières
    Herta Flor
    Antoine Grigis
    Hugh Garavan
    Penny Gowland
    Andreas Heinz
    Rüdiger Brühl
    Frauke Nees
    Dimitri Papadopoulos Orfanos
    Tomáš Paus
    Luise Poustka
    Sarah Hohmann
    Sabina Millenet
    Juliane H. Fröhner
    Michael N. Smolka
    Henrik Walter
    Robert Whelan
    Gunter Schumann
    Jean-Luc Martinot
    Eric Artiges
    [J]. Molecular Psychiatry, 2023, 28 : 639 - 646
  • [2] Machine-Learning Aided Peer Prediction
    Liu, Yang
    Chen, Yiling
    [J]. EC'17: PROCEEDINGS OF THE 2017 ACM CONFERENCE ON ECONOMICS AND COMPUTATION, 2017, : 63 - 80
  • [3] Prediction of cholinergic compounds by machine-learning
    Wijeyesakere, Sanjeeva J.
    Wilson, Daniel M.
    Sue Marty, Mary
    [J]. Computational Toxicology, 2020, 13
  • [4] Clinical-learning versus machine-learning for transdiagnostic prediction of psychosis onset in individuals at-risk
    Fusar-Poli, Paolo
    Stringer, Dominic
    Durieux, Alice M. S.
    Rutigliano, Grazia
    Bonoldi, Ilaria
    De Micheli, Andrea
    Stahl, Daniel
    [J]. TRANSLATIONAL PSYCHIATRY, 2019, 9 (1)
  • [5] Clinical-learning versus machine-learning for transdiagnostic prediction of psychosis onset in individuals at-risk
    Paolo Fusar-Poli
    Dominic Stringer
    Alice M. S. Durieux
    Grazia Rutigliano
    Ilaria Bonoldi
    Andrea De Micheli
    Daniel Stahl
    [J]. Translational Psychiatry, 9
  • [6] Groundwater Prediction Using Machine-Learning Tools
    Hussein, Eslam A.
    Thron, Christopher
    Ghaziasgar, Mehrdad
    Bagula, Antoine
    Vaccari, Mattia
    [J]. ALGORITHMS, 2020, 13 (11)
  • [7] Advancing interpretability of machine-learning prediction models
    Trenary, Laurie
    DelSole, Timothy
    [J]. ENVIRONMENTAL DATA SCIENCE, 2022, 1
  • [8] A machine-learning algorithm for wind gust prediction
    Sallis, P. J.
    Claster, W.
    Hernandez, S.
    [J]. COMPUTERS & GEOSCIENCES, 2011, 37 (09) : 1337 - 1344
  • [9] Risk Prediction of Pancreatic Cancer in Patients With Recent-onset Hyperglycemia A Machine-learning Approach
    Chen, Wansu
    Butler, Rebecca K.
    Lustigova, Eva
    Chari, Suresh T.
    Maitra, Anirban
    Rinaudo, Jo A.
    Wu, Bechien U.
    [J]. JOURNAL OF CLINICAL GASTROENTEROLOGY, 2023, 57 (01) : 103 - 110
  • [10] Development and clinical impact assessment of a machine-learning model for early prediction of late-onset sepsis
    van den Berg, Merel
    Medina, O'Jay
    Loohuis, Ingmar
    van der Flier, Michiel
    Dudink, Jeroen
    Benders, Manon
    Bartels, Richard
    Vijlbrief, Daniel
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 163