Anxiety onset in adolescents: a machine-learning prediction

被引:4
|
作者
Chavanne, Alice [1 ,2 ]
Paillere Martinot, Marie Laure [1 ,3 ]
Penttilae, Jani [4 ]
Grimmer, Yvonne [5 ]
Conrod, Patricia [6 ]
Stringaris, Argyris [7 ]
van Noort, Betteke [8 ]
Isensee, Corinna [9 ]
Becker, Andreas [9 ]
Banaschewski, Tobias [5 ]
Bokde, Arun L. W. [10 ,11 ]
Desrivieres, Sylvane [12 ]
Flor, Herta [13 ,14 ]
Grigis, Antoine [15 ]
Garavan, Hugh [16 ,17 ]
Gowland, Penny [18 ]
Heinz, Andreas [19 ,20 ]
Bruehl, Ruediger [21 ,22 ]
Nees, Frauke [5 ,23 ]
Orfanos, Dimitri Papadopoulos [15 ]
Paus, Tomas [24 ]
Poustka, Luise [9 ]
Hohmann, Sarah S. [5 ]
Millenet, Sabina [5 ]
Froehner, Juliane [25 ]
Smolka, Michael [25 ]
Walter, Henrik [19 ,20 ]
Whelan, Robert [26 ]
Schumann, Gunter [27 ,28 ]
Martinot, Jean-Luc [1 ]
Artiges, Eric [1 ,29 ]
机构
[1] Univ Paris Saclay, Ecole Normale Super Paris Saclay, Inst Natl Sante & Rech Med, Ctr Borelli,INSERM U1299 Trajectories Dev Psychiat, Gif Sur Yvette, France
[2] Humboldt Univ, Dept Psychol, Berlin, Germany
[3] Sorbonne Univ, Pitie Salpetriere Hosp, Dept Child & Adolescent Psychiat, AP HP, Paris, France
[4] Psychosocial Serv Adolescent Outpatient Clin, Dept Social & Hlth Care, Kauppakatu 14, Lahti, Finland
[5] Heidelberg Univ, Cent Inst Mental Hlth, Med Fac Mannheim, Dept Child & Adolescent Psychiat & Psychotherapy, Mannheim, Germany
[6] Univ Montreal, CHU Sainte Justine Hosp, Dept Psychiat, Montreal, PQ, Canada
[7] UCL, Div Psychiat, London, England
[8] Charite Univ Med Berlin, Dept Child & Adolescent Psychiat Psychosomat & Psy, Campus Charite Mitte, Charite Pl 1, Berlin, Germany
[9] Univ Med Ctr, Dept Child & Adolescent Psychiat & Psychotherapy, von Siebold Str 5, D-37075 Gottingen, Germany
[10] Trinity Coll Inst Neurosci, Sch Med, Discipline Psychiat, Dublin, Ireland
[11] Trinity Coll Dublin, Trinity Coll Inst Neurosci, Dublin, Ireland
[12] Kings Coll London, Inst Psychiat Psychol & Neurosci, Ctr Populat Neurosci andPrecis Med PONS, Social Genet & Dev Psychiat Ctr, London, England
[13] Heidelberg Univ, Inst Cognit & Clin Neurosci, Cent Inst Mental Hlth, Med Fac Mannheim, Sq J5, Mannheim, Germany
[14] Univ Mannheim, Sch Social Sci, Dept Psychol, D-68131 Mannheim, Germany
[15] Univ Paris Saclay, NeuroSpin, CEA, F-91191 Gif Sur Yvette, France
[16] Univ Vermont, Dept Psychiat, Burlington, VT 05405 USA
[17] Univ Vermont, Dept Psychol, Burlington, VT 05405 USA
[18] Univ Nottingham, Sir Peter Mansfield Imaging Ctr, Sch Phys & Astron, Univ Pk, Nottingham, Nottinghamshire, England
[19] Charite, Humboldt Univ Berlin, Freie Univ Berlin, Dept Psychiat & Psychotherapy CCM, Berlin, Germany
[20] Berlin Inst Hlth, Berlin, Germany
[21] Phys Tech Bundesanstalt PTB, Braunschweig, Germany
[22] Phys Tech Bundesanstalt PTB, Berlin, Germany
[23] Univ Kiel, Univ Med Ctr Schleswig Holstein, Inst Med Psychol & Med Sociol, Kiel, Germany
[24] Univ Montreal, Fac Med, CHU Sainte Justine Res Ctr, Dept Psychiat & Neurosci, Montreal, PQ, Canada
[25] Tech Univ Dresden, Med Fac, Sect Syst Neurosci, Dresden, Germany
[26] Trinity Coll Dublin, Global Brain Hlth Inst, Sch Psychol, Dublin, Ireland
[27] Fudan Univ Shanghai, ISTBI, Ctr Populat Neurosci & Stratified Med PONS, Berlin, Germany
[28] Charite, Dept Psychiat & Neurosci, Berlin, Germany
[29] EPS Barthelemy Durand, Dept Psychiat, Etampes, France
基金
英国医学研究理事会; 爱尔兰科学基金会; 美国国家卫生研究院; 欧盟地平线“2020”;
关键词
PERIAQUEDUCTAL GRAY; MENTAL-DISORDERS; BRAIN-FUNCTION; RISK; CHILDREN; PSYCHOPATHOLOGY; CLASSIFICATION; QUESTIONNAIRE; METAANALYSIS; COMORBIDITY;
D O I
10.1038/s41380-022-01840-z
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Recent longitudinal studies in youth have reported MRI correlates of prospective anxiety symptoms during adolescence, a vulnerable period for the onset of anxiety disorders. However, their predictive value has not been established. Individual prediction through machine-learning algorithms might help bridge the gap to clinical relevance. A voting classifier with Random Forest, Support Vector Machine and Logistic Regression algorithms was used to evaluate the predictive pertinence of gray matter volumes of interest and psychometric scores in the detection of prospective clinical anxiety. Participants with clinical anxiety at age 18-23 (N = 156) were investigated at age 14 along with healthy controls (N = 424). Shapley values were extracted for in-depth interpretation of feature importance. Prospective prediction of pooled anxiety disorders relied mostly on psychometric features and achieved moderate performance (area under the receiver operating curve = 0.68), while generalized anxiety disorder (GAD) prediction achieved similar performance. MRI regional volumes did not improve the prediction performance of prospective pooled anxiety disorders with respect to psychometric features alone, but they improved the prediction performance of GAD, with the caudate and pallidum volumes being among the most contributing features. To conclude, in non-anxious 14 year old adolescents, future clinical anxiety onset 4-8 years later could be individually predicted. Psychometric features such as neuroticism, hopelessness and emotional symptoms were the main contributors to pooled anxiety disorders prediction. Neuroanatomical data, such as caudate and pallidum volume, proved valuable for GAD and should be included in prospective clinical anxiety prediction in adolescents.
引用
收藏
页码:639 / 646
页数:8
相关论文
共 50 条
  • [31] Machine-learning based prediction of crash response of tubular structures
    Sakaridis, Emmanouil
    Karathanasopoulos, Nikolaos
    Mohr, Dirk
    [J]. INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 2022, 166
  • [32] A comparison of machine-learning techniques for the prediction of the auroral electrojet index
    Sumesh Gopinath
    P R Prince
    [J]. Journal of Earth System Science, 2019, 128
  • [33] Prediction of Settling Velocity of Microplastics by Multiple Machine-Learning Methods
    Leng, Zequan
    Cao, Lu
    Gao, Yun
    Hou, Yadong
    Wu, Di
    Huo, Zhongyan
    Zhao, Xizeng
    [J]. WATER, 2024, 16 (13)
  • [34] Machine-learning based VMAF prediction for HDR video content
    Mueller, Christoph
    Steglich, Stephan
    Gross, Sandra
    Kremer, Paul
    [J]. PROCEEDINGS OF THE 2023 PROCEEDINGS OF THE 14TH ACM MULTIMEDIA SYSTEMS CONFERENCE, MMSYS 2023, 2023, : 328 - 332
  • [35] Simulated playground for evaluating machine-learning algorithms for bioactivity prediction
    Thompson, Jared
    Schrodl, Stefan
    Mysinger, Michael
    Wallach, Izhar
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256
  • [36] Stress prediction using machine-learning techniques on physiological signals
    Tu Thanh Do
    Luan Van Tran
    Tho Anh Le
    Thao Mai Thi Le
    Lan-Anh Hoang Duong
    Thuong Hoai Nguyen
    Duy The Phan
    Toi Van Vo
    Huong Thanh Thi Ha
    [J]. 2023 1ST INTERNATIONAL CONFERENCE ON HEALTH SCIENCE AND TECHNOLOGY, ICHST 2023, 2023,
  • [37] Analysis and prediction of Indian stock market: a machine-learning approach
    Shilpa Srivastava
    Millie Pant
    Varuna Gupta
    [J]. International Journal of System Assurance Engineering and Management, 2023, 14 : 1567 - 1585
  • [38] Machine-learning techniques for the prediction of protein-protein interactions
    Sarkar, Debasree
    Saha, Sudipto
    [J]. JOURNAL OF BIOSCIENCES, 2019, 44 (04)
  • [39] Machine-Learning Prediction of Atomistic Stress along Grain Boundaries
    Cui, Y.
    Chew, H. B.
    [J]. ACTA MATERIALIA, 2022, 222
  • [40] PREDICTION OF SUPERCONDUCTING TRANSITION TEMPERATURE USING A MACHINE-LEARNING METHOD
    Liu, Yao
    Zhang, Huiran
    Xu, Yan
    Li, Shengzhou
    Dai, Dongbo
    Li, Chengfan
    Ding, Guangtai
    Shen, Wenfeng
    Qian, Quan
    [J]. MATERIALI IN TEHNOLOGIJE, 2018, 52 (05): : 639 - 643