Groundwater Prediction Using Machine-Learning Tools

被引:53
|
作者
Hussein, Eslam A. [1 ]
Thron, Christopher [2 ]
Ghaziasgar, Mehrdad [1 ]
Bagula, Antoine [1 ]
Vaccari, Mattia [3 ]
机构
[1] Univ Western Cape, Dept Comp Sci, ZA-7535 Cape Town, South Africa
[2] Univ Cent Texas, Dept Sci & Math, Killeen, TX 76549 USA
[3] Univ Western Cape, Dept Phys & Astron, ZA-7535 Cape Town, South Africa
基金
新加坡国家研究基金会;
关键词
time series data; pixel estimation; full image prediction; gaussian mixture model; global features; feature engineering; square root transformation; WATER; UNCERTAINTY; MANAGEMENT; LEVEL; MODEL; ROOT; ANN;
D O I
10.3390/a13110300
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Predicting groundwater availability is important to water sustainability and drought mitigation. Machine-learning tools have the potential to improve groundwater prediction, thus enabling resource planners to: (1) anticipate water quality in unsampled areas or depth zones; (2) design targeted monitoring programs; (3) inform groundwater protection strategies; and (4) evaluate the sustainability of groundwater sources of drinking water. This paper proposes a machine-learning approach to groundwater prediction with the following characteristics: (i) the use of a regression-based approach to predict full groundwater images based on sequences of monthly groundwater maps; (ii) strategic automatic feature selection (both local and global features) using extreme gradient boosting; and (iii) the use of a multiplicity of machine-learning techniques (extreme gradient boosting, multivariate linear regression, random forests, multilayer perceptron and support vector regression). Of these techniques, support vector regression consistently performed best in terms of minimizing root mean square error and mean absolute error. Furthermore, including a global feature obtained from a Gaussian Mixture Model produced models with lower error than the best which could be obtained with local geographical features.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Characterizing EMG data using machine-learning tools
    Yousefi, Jamileh
    Hamilton-Wright, Andrew
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2014, 51 : 1 - 13
  • [2] Groundwater fluoride prediction modeling using physicochemical parameters in Punjab, India: a machine-learning approach
    Kerketta, Anjali
    Kapoor, Harmanpreet Singh
    Sahoo, Prafulla Kumar
    [J]. FRONTIERS IN SOIL SCIENCE, 2024, 4
  • [3] Finding flares in Kepler data using machine-learning tools
    Vida, Krisztian
    Roettenbacher, Rachael M.
    [J]. ASTRONOMY & ASTROPHYSICS, 2018, 616
  • [4] Prediction of brain maturity in infants using machine-learning algorithms
    Smyser, Christopher D.
    Dosenbach, Nico U. F.
    Smyser, Tara A.
    Snyder, Abraham Z.
    Rogers, Cynthia E.
    Inder, Terrie E.
    Schlaggar, Bradley L.
    Neil, Jeffrey J.
    [J]. NEUROIMAGE, 2016, 136 : 1 - 9
  • [5] Machine-Learning Aided Peer Prediction
    Liu, Yang
    Chen, Yiling
    [J]. EC'17: PROCEEDINGS OF THE 2017 ACM CONFERENCE ON ECONOMICS AND COMPUTATION, 2017, : 63 - 80
  • [6] Risk estimation and risk prediction using machine-learning methods
    Kruppa, Jochen
    Ziegler, Andreas
    Koenig, Inke R.
    [J]. HUMAN GENETICS, 2012, 131 (10) : 1639 - 1654
  • [7] PREDICTION OF SUPERCONDUCTING TRANSITION TEMPERATURE USING A MACHINE-LEARNING METHOD
    Liu, Yao
    Zhang, Huiran
    Xu, Yan
    Li, Shengzhou
    Dai, Dongbo
    Li, Chengfan
    Ding, Guangtai
    Shen, Wenfeng
    Qian, Quan
    [J]. MATERIALI IN TEHNOLOGIJE, 2018, 52 (05): : 639 - 643
  • [8] Risk estimation and risk prediction using machine-learning methods
    Jochen Kruppa
    Andreas Ziegler
    Inke R. König
    [J]. Human Genetics, 2012, 131 : 1639 - 1654
  • [9] Stress prediction using machine-learning techniques on physiological signals
    Tu Thanh Do
    Luan Van Tran
    Tho Anh Le
    Thao Mai Thi Le
    Lan-Anh Hoang Duong
    Thuong Hoai Nguyen
    Duy The Phan
    Toi Van Vo
    Huong Thanh Thi Ha
    [J]. 2023 1ST INTERNATIONAL CONFERENCE ON HEALTH SCIENCE AND TECHNOLOGY, ICHST 2023, 2023,
  • [10] Prediction of cholinergic compounds by machine-learning
    Wijeyesakere, Sanjeeva J.
    Wilson, Daniel M.
    Sue Marty, Mary
    [J]. Wilson, Daniel M. (MWilson3@dow.com), 1600, Elsevier B.V. (13):