Risk estimation and risk prediction using machine-learning methods

被引:0
|
作者
Jochen Kruppa
Andreas Ziegler
Inke R. König
机构
[1] Universität zu Lübeck,Institut für Medizininsche Biometrie und Statistik
[2] Universitätsklinikum Schleswig-Holstein,undefined
[3] Campus Lübeck,undefined
来源
Human Genetics | 2012年 / 131卷
关键词
Lasso; Probability Estimation; Multifactor Dimensionality Reduction; Brier Score; Single Single Nucleotide Polymorphism;
D O I
暂无
中图分类号
学科分类号
摘要
After an association between genetic variants and a phenotype has been established, further study goals comprise the classification of patients according to disease risk or the estimation of disease probability. To accomplish this, different statistical methods are required, and specifically machine-learning approaches may offer advantages over classical techniques. In this paper, we describe methods for the construction and evaluation of classification and probability estimation rules. We review the use of machine-learning approaches in this context and explain some of the machine-learning algorithms in detail. Finally, we illustrate the methodology through application to a genome-wide association analysis on rheumatoid arthritis.
引用
收藏
页码:1639 / 1654
页数:15
相关论文
共 50 条
  • [1] Risk estimation and risk prediction using machine-learning methods
    Kruppa, Jochen
    Ziegler, Andreas
    Koenig, Inke R.
    [J]. HUMAN GENETICS, 2012, 131 (10) : 1639 - 1654
  • [2] Data-Driven Machine-Learning Methods for Diabetes Risk Prediction
    Dritsas, Elias
    Trigka, Maria
    [J]. SENSORS, 2022, 22 (14)
  • [3] Machine-Learning Approach for Risk Estimation and Risk Prediction of the Effect of Climate on Bovine Respiratory Disease
    Gwaka, Joseph K.
    Demafo, Marcy A.
    N'konzi, Joel-Pascal N.
    Pak, Anton
    Olumoh, Jamiu
    Elfaki, Faiz
    Adegboye, Oyelola A.
    [J]. MATHEMATICS, 2023, 11 (06)
  • [4] Cardiovascular Risk Prediction Using Machine-learning Methods in the Middle-aged Korean Population
    Kim, Hyeon Chang
    Jo, In-Jeong
    Sung, Ji Min
    Chang, Hyuk-Jae
    [J]. CIRCULATION, 2017, 135
  • [5] Osteoporosis Risk Prediction Using Machine Learning and Conventional Methods
    Kim, Sung Kean
    Yoo, Tae Keun
    Oh, Ein
    Kim, Deok Won
    [J]. 2013 35TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2013, : 188 - 191
  • [6] A machine-learning approach to cardiovascular risk prediction in psoriatic arthritis
    Navarini, Luca
    Sperti, Michela
    Currado, Damiano
    Costa, Luisa
    Deriu, Marco A.
    Margiotta, Domenico Paolo Emanuele
    Tasso, Marco
    Scarpa, Raffaele
    Afeltra, Antonella
    Caso, Francesco
    [J]. RHEUMATOLOGY, 2020, 59 (07) : 1767 - 1769
  • [7] Risk prediction with machine learning and regression methods
    Steyerberg, Ewout W.
    van der Ploeg, Tjeerd
    Van Calster, Ben
    [J]. BIOMETRICAL JOURNAL, 2014, 56 (04) : 601 - 606
  • [8] Credit Risk Analysis Using Machine-Learning Algorithms
    Alagoz, Gokhan
    Canakoglu, Ethem
    [J]. 29TH IEEE CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS (SIU 2021), 2021,
  • [9] A Two-Country Study of Default Risk Prediction Using Bayesian Machine-Learning
    Incerti, Fabio
    Bargagli-Stoffi, Falco J.
    Riccaboni, Massimo
    [J]. MACHINE LEARNING, OPTIMIZATION, AND DATA SCIENCE, LOD 2022, PT II, 2023, 13811 : 188 - 192
  • [10] Can machine-learning improve cardiovascular risk prediction using routine clinical data?
    Weng, Stephen F.
    Reps, Jenna
    Kai, Joe
    Garibaldi, Jonathan M.
    Qureshi, Nadeem
    [J]. PLOS ONE, 2017, 12 (04):