Risk estimation and risk prediction using machine-learning methods

被引:0
|
作者
Jochen Kruppa
Andreas Ziegler
Inke R. König
机构
[1] Universität zu Lübeck,Institut für Medizininsche Biometrie und Statistik
[2] Universitätsklinikum Schleswig-Holstein,undefined
[3] Campus Lübeck,undefined
来源
Human Genetics | 2012年 / 131卷
关键词
Lasso; Probability Estimation; Multifactor Dimensionality Reduction; Brier Score; Single Single Nucleotide Polymorphism;
D O I
暂无
中图分类号
学科分类号
摘要
After an association between genetic variants and a phenotype has been established, further study goals comprise the classification of patients according to disease risk or the estimation of disease probability. To accomplish this, different statistical methods are required, and specifically machine-learning approaches may offer advantages over classical techniques. In this paper, we describe methods for the construction and evaluation of classification and probability estimation rules. We review the use of machine-learning approaches in this context and explain some of the machine-learning algorithms in detail. Finally, we illustrate the methodology through application to a genome-wide association analysis on rheumatoid arthritis.
引用
收藏
页码:1639 / 1654
页数:15
相关论文
共 50 条
  • [21] Statistical Machine-Learning Methods for Genomic Prediction Using the SKM Library
    Montesinos Lopez, Osval A.
    Mosqueda Gonzalez, Brandon Alejandro
    Montesinos Lopez, Abelardo
    Crossa, Jose
    GENES, 2023, 14 (05)
  • [22] Risk Prediction of Femoral Neck Osteoporosis Using Machine Learning and Conventional Methods
    Yoo, Tae Keun
    Kim, Sung Kean
    Oh, Ein
    Kim, Deok Won
    ADVANCES IN COMPUTATIONAL INTELLIGENCE, PT II, 2013, 7903 : 181 - +
  • [23] Risk Prediction Applied to Global Software Development using Machine Learning Methods
    Hassan, Hossam
    Abdel-Fattah, Manal A.
    Ghoneim, Amr
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (09) : 111 - 120
  • [24] Work Disability Risk Prediction Using Machine Learning, Comparison of Two Methods
    Saarela, Katja
    Huhta-Koivisto, Vili
    Nurminen, Jukka K.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INNOVATIONS IN COMPUTING RESEARCH (ICR'22), 2022, 1431 : 13 - 21
  • [25] Identification of Risk Factors and Prediction of Sepsis in Pregnancy Using Machine Learning Methods
    Kopanitsa, Georgy
    Metsker, Oleg
    Paskoshev, David
    Greschischeva, Sofia
    10TH INTERNATIONAL YOUNG SCIENTISTS CONFERENCE IN COMPUTATIONAL SCIENCE (YSC2021), 2021, 193 : 393 - 401
  • [26] Machine-learning model for the prediction of preeclampsia - a step toward personalized risk assessment
    Shtar, Guy
    Rokach, Lior
    Novack, Victor
    Novack, Lena
    Than, Gabor
    Laivouri, Hannele
    Farina, Antonio
    Hadar, Amnon G.
    Erez, Ofer
    AMERICAN JOURNAL OF OBSTETRICS AND GYNECOLOGY, 2022, 226 (01) : S171 - S171
  • [27] Prediction of Hemolytic Toxicity for Saponins by Machine-Learning Methods
    Zheng, Suqing
    Wang, Yibing
    Liu, Hongmei
    Chang, Wenping
    Xu, Yong
    Lin, Fu
    CHEMICAL RESEARCH IN TOXICOLOGY, 2019, 32 (06) : 1014 - 1026
  • [28] Estimation of traffic dynamics models with machine-learning methods
    Antoniou, Constantinos
    Koutsopoulos, Haris N.
    TRAFFIC FLOW THEORY 2006, 2006, (1965): : 103 - 111
  • [29] Machine-learning methods for stream water temperature prediction
    Feigl, Moritz
    Lebiedzinski, Katharina
    Herrnegger, Mathew
    Schulz, Karsten
    HYDROLOGY AND EARTH SYSTEM SCIENCES, 2021, 25 (05) : 2951 - 2977
  • [30] Personalized risk prediction of symptomatic intracerebral hemorrhage after stroke thrombolysis using a machine-learning model
    Wang, Feng
    Huang, Yuanhanqing
    Xia, Yong
    Zhang, Wei
    Fang, Kun
    Zhou, Xiaoyu
    Yu, Xiaofei
    Cheng, Xin
    Li, Gang
    Wang, Xiaoping
    Luo, Guojun
    Wu, Danhong
    Liu, Xueyuan
    Campbell, Bruce C. V.
    Dong, Qiang
    Zhao, Yuwu
    THERAPEUTIC ADVANCES IN NEUROLOGICAL DISORDERS, 2020, 13