Groundwater Prediction Using Machine-Learning Tools

被引:53
|
作者
Hussein, Eslam A. [1 ]
Thron, Christopher [2 ]
Ghaziasgar, Mehrdad [1 ]
Bagula, Antoine [1 ]
Vaccari, Mattia [3 ]
机构
[1] Univ Western Cape, Dept Comp Sci, ZA-7535 Cape Town, South Africa
[2] Univ Cent Texas, Dept Sci & Math, Killeen, TX 76549 USA
[3] Univ Western Cape, Dept Phys & Astron, ZA-7535 Cape Town, South Africa
基金
新加坡国家研究基金会;
关键词
time series data; pixel estimation; full image prediction; gaussian mixture model; global features; feature engineering; square root transformation; WATER; UNCERTAINTY; MANAGEMENT; LEVEL; MODEL; ROOT; ANN;
D O I
10.3390/a13110300
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Predicting groundwater availability is important to water sustainability and drought mitigation. Machine-learning tools have the potential to improve groundwater prediction, thus enabling resource planners to: (1) anticipate water quality in unsampled areas or depth zones; (2) design targeted monitoring programs; (3) inform groundwater protection strategies; and (4) evaluate the sustainability of groundwater sources of drinking water. This paper proposes a machine-learning approach to groundwater prediction with the following characteristics: (i) the use of a regression-based approach to predict full groundwater images based on sequences of monthly groundwater maps; (ii) strategic automatic feature selection (both local and global features) using extreme gradient boosting; and (iii) the use of a multiplicity of machine-learning techniques (extreme gradient boosting, multivariate linear regression, random forests, multilayer perceptron and support vector regression). Of these techniques, support vector regression consistently performed best in terms of minimizing root mean square error and mean absolute error. Furthermore, including a global feature obtained from a Gaussian Mixture Model produced models with lower error than the best which could be obtained with local geographical features.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Prediction of groundwater quality indices using machine learning algorithms
    Raheja, Hemant
    Goel, Arun
    Pal, Mahesh
    [J]. WATER PRACTICE AND TECHNOLOGY, 2022, 17 (01) : 336 - 351
  • [22] COMPARISON OF A MACHINE-LEARNING PREDICTION ALGORITHM WITH CLINICAL TOOLS FOR THE IDENTIFICATION OF DIABETIC PATIENTS AT RISK FOR NASH
    Tietz, Andreas
    Bader, Giovanni
    Doherty, Matt
    Reinhart, Brenda
    Balp, Maria-Magdalena
    Pedrosa, Marcos C.
    Acharya, Sandip
    Loeffler, Juergen
    Schattenberg, Joern M.
    [J]. HEPATOLOGY, 2020, 72 : 907A - 908A
  • [23] Prediction of groundwater quality using efficient machine learning technique
    Singha, Sudhakar
    Pasupuleti, Srinivas
    Singha, Soumya S.
    Singh, Rambabu
    Kumar, Suresh
    [J]. CHEMOSPHERE, 2021, 276
  • [24] Groundwater level dynamics in a subtropical fan delta region and its future prediction using machine learning tools: Sustainable groundwater restoration
    Mahammad, Sadik
    Islam, Aznarul
    Shit, Pravat Kumar
    Islam, Abu Reza Md Towfiqul
    Alam, Edris
    [J]. JOURNAL OF HYDROLOGY-REGIONAL STUDIES, 2023, 47
  • [25] Disruption Prediction Approaches Using Machine Learning Tools in Tokamaks
    Sias, G.
    Cannas, B.
    Carcangiu, S.
    Fanni, A.
    Murari, A.
    Pau, A.
    [J]. 2019 PHOTONICS & ELECTROMAGNETICS RESEARCH SYMPOSIUM - SPRING (PIERS-SPRING), 2019, : 2880 - 2890
  • [26] PREDICTION OF REGULATORY sRNAs IN PROKARYOTES USING MACHINE LEARNING TOOLS
    Abu-halaweh, Nael
    Sabnis, Amit
    Harrison, Robert
    [J]. BIOINFORMATICS 2011, 2011, : 75 - 81
  • [27] Evaluating Precision of Annular Pressure Buildup (APB) Estimation Using Machine-Learning Tools
    Maiti, Subhadip
    Gupta, Himanshu
    Vyas, Aditya
    Kulkarni, Sandeep D.
    [J]. SPE DRILLING & COMPLETION, 2022, 37 (01) : 93 - 103
  • [28] Prediction of hemophilia A severity using a small-input machine-learning framework
    Lopes, Tiago J. S.
    Rios, Ricardo
    Nogueira, Tatiane
    Mello, Rodrigo F.
    [J]. NPJ SYSTEMS BIOLOGY AND APPLICATIONS, 2021, 7 (01)
  • [29] Sepsis prediction using machine-learning methods: prolonged disorders of consciousness patients
    Metsker, O.
    Aybazova, M.
    Kondratyeva, E.
    Dryagina, N.
    Kondratev, A.
    Efimov, E.
    [J]. JOURNAL OF THE NEUROLOGICAL SCIENCES, 2019, 405
  • [30] Prediction of Progressive Frost Damage Development of Concrete Using Machine-Learning Algorithms
    ul Haq, Muhammad Atasham
    Xu, Wencheng
    Abid, Muhammad
    Gong, Fuyuan
    [J]. BUILDINGS, 2023, 13 (10)