Clinical-learning versus machine-learning for transdiagnostic prediction of psychosis onset in individuals at-risk

被引:0
|
作者
Paolo Fusar-Poli
Dominic Stringer
Alice M. S. Durieux
Grazia Rutigliano
Ilaria Bonoldi
Andrea De Micheli
Daniel Stahl
机构
[1] Institute of Psychiatry,Early Psychosis: Interventions and Clinical
[2] Psychology & Neuroscience,detection (EPIC) lab, Department of Psychosis Studies
[3] King’s College London,Department of Brain and Behavioural Sciences
[4] University of Pavia,OASIS service
[5] South London and Maudsley NHS Foundation Trust,Department of Biostatistics and Health Informatics
[6] National Institute of Health Research – Mental Health – Translational Research Collaboration – Early Psychosis Workstream,undefined
[7] Institute of Psychiatry,undefined
[8] Psychology & Neuroscience,undefined
[9] King’s College London,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Predicting the onset of psychosis in individuals at-risk is based on robust prognostic model building methods including a priori clinical knowledge (also termed clinical-learning) to preselect predictors or machine-learning methods to select predictors automatically. To date, there is no empirical research comparing the prognostic accuracy of these two methods for the prediction of psychosis onset. In a first experiment, no improved performance was observed when machine-learning methods (LASSO and RIDGE) were applied—using the same predictors—to an individualised, transdiagnostic, clinically based, risk calculator previously developed on the basis of clinical-learning (predictors: age, gender, age by gender, ethnicity, ICD-10 diagnostic spectrum), and externally validated twice. In a second experiment, two refined versions of the published model which expanded the granularity of the ICD-10 diagnosis were introduced: ICD-10 diagnostic categories and ICD-10 diagnostic subdivisions. Although these refined versions showed an increase in apparent performance, their external performance was similar to the original model. In a third experiment, the three refined models were analysed under machine-learning and clinical-learning with a variable event per variable ratio (EPV). The best performing model under low EPVs was obtained through machine-learning approaches. The development of prognostic models on the basis of a priori clinical knowledge, large samples and adequate events per variable is a robust clinical prediction method to forecast psychosis onset in patients at-risk, and is comparable to machine-learning methods, which are more difficult to interpret and implement. Machine-learning methods should be preferred for high dimensional data when no a priori knowledge is available.
引用
收藏
相关论文
共 50 条
  • [1] Clinical-learning versus machine-learning for transdiagnostic prediction of psychosis onset in individuals at-risk
    Fusar-Poli, Paolo
    Stringer, Dominic
    Durieux, Alice M. S.
    Rutigliano, Grazia
    Bonoldi, Ilaria
    De Micheli, Andrea
    Stahl, Daniel
    [J]. TRANSLATIONAL PSYCHIATRY, 2019, 9 (1)
  • [2] Anxiety onset in adolescents: a machine-learning prediction
    Alice V. Chavanne
    Marie Laure Paillère Martinot
    Jani Penttilä
    Yvonne Grimmer
    Patricia Conrod
    Argyris Stringaris
    Betteke van Noort
    Corinna Isensee
    Andreas Becker
    Tobias Banaschewski
    Arun L. W. Bokde
    Sylvane Desrivières
    Herta Flor
    Antoine Grigis
    Hugh Garavan
    Penny Gowland
    Andreas Heinz
    Rüdiger Brühl
    Frauke Nees
    Dimitri Papadopoulos Orfanos
    Tomáš Paus
    Luise Poustka
    Sarah Hohmann
    Sabina Millenet
    Juliane H. Fröhner
    Michael N. Smolka
    Henrik Walter
    Robert Whelan
    Gunter Schumann
    Jean-Luc Martinot
    Eric Artiges
    [J]. Molecular Psychiatry, 2023, 28 : 639 - 646
  • [3] Anxiety onset in adolescents: a machine-learning prediction
    Chavanne, Alice
    Paillere Martinot, Marie Laure
    Penttilae, Jani
    Grimmer, Yvonne
    Conrod, Patricia
    Stringaris, Argyris
    van Noort, Betteke
    Isensee, Corinna
    Becker, Andreas
    Banaschewski, Tobias
    Bokde, Arun L. W.
    Desrivieres, Sylvane
    Flor, Herta
    Grigis, Antoine
    Garavan, Hugh
    Gowland, Penny
    Heinz, Andreas
    Bruehl, Ruediger
    Nees, Frauke
    Orfanos, Dimitri Papadopoulos
    Paus, Tomas
    Poustka, Luise
    Hohmann, Sarah S.
    Millenet, Sabina
    Froehner, Juliane
    Smolka, Michael
    Walter, Henrik
    Whelan, Robert
    Schumann, Gunter
    Martinot, Jean-Luc
    Artiges, Eric
    [J]. MOLECULAR PSYCHIATRY, 2023, 28 (02) : 639 - 646
  • [4] Risk estimation and risk prediction using machine-learning methods
    Kruppa, Jochen
    Ziegler, Andreas
    Koenig, Inke R.
    [J]. HUMAN GENETICS, 2012, 131 (10) : 1639 - 1654
  • [5] Risk estimation and risk prediction using machine-learning methods
    Jochen Kruppa
    Andreas Ziegler
    Inke R. König
    [J]. Human Genetics, 2012, 131 : 1639 - 1654
  • [6] Prediction of psychosis using neural oscillations and machine learning in neuroleptic-naive at-risk patients
    Ramyead, Avinash
    Studerus, Erich
    Kometer, Michael
    Uttinger, Martina
    Gschwandtner, Ute
    Fuhr, Peter
    Riecher-Rossler, Anita
    [J]. WORLD JOURNAL OF BIOLOGICAL PSYCHIATRY, 2016, 17 (04): : 285 - 295
  • [7] Risk Prediction of Pancreatic Cancer in Patients With Recent-onset Hyperglycemia A Machine-learning Approach
    Chen, Wansu
    Butler, Rebecca K.
    Lustigova, Eva
    Chari, Suresh T.
    Maitra, Anirban
    Rinaudo, Jo A.
    Wu, Bechien U.
    [J]. JOURNAL OF CLINICAL GASTROENTEROLOGY, 2023, 57 (01) : 103 - 110
  • [8] Can machine-learning improve cardiovascular risk prediction using routine clinical data?
    Weng, Stephen F.
    Reps, Jenna
    Kai, Joe
    Garibaldi, Jonathan M.
    Qureshi, Nadeem
    [J]. PLOS ONE, 2017, 12 (04):
  • [9] Prediction Models of Functional Outcomes for Individuals in the Clinical High-Risk State for Psychosis or With Recent-Onset Depression A Multimodal, Multisite Machine Learning Analysis
    Koutsouleris, Nikolaos
    Kambeitz-Ilankovic, Lana
    Ruhrmann, Stephan
    Rosen, Marlene
    Ruef, Anne
    Dwyer, Dominic B.
    Paolini, Marco
    Chisholm, Katharine
    Kambeitz, Joseph
    Haidl, Theresa
    Schmidt, Andre
    Gillam, John
    Schultze-Lutter, Frauke
    Falkai, Peter
    Reiser, Maximilian
    Riecher-Rossler, Anita
    Upthegrove, Rachel
    Hietala, Jarmo
    Salokangas, Raimo K. R.
    Pantelis, Christos
    Meisenzahl, Eva
    Wood, Stephen J.
    Beque, Dirk
    Brambilla, Paolo
    Borgwardt, Stefan
    [J]. JAMA PSYCHIATRY, 2018, 75 (11) : 1156 - 1172
  • [10] A machine-learning approach to cardiovascular risk prediction in psoriatic arthritis
    Navarini, Luca
    Sperti, Michela
    Currado, Damiano
    Costa, Luisa
    Deriu, Marco A.
    Margiotta, Domenico Paolo Emanuele
    Tasso, Marco
    Scarpa, Raffaele
    Afeltra, Antonella
    Caso, Francesco
    [J]. RHEUMATOLOGY, 2020, 59 (07) : 1767 - 1769