Energy landscapes for machine learning

被引:73
|
作者
Ballard, Andrew J. [1 ]
Das, Ritankar [1 ]
Martiniani, Stefano [1 ]
Mehta, Dhagash [2 ]
Sagun, Levent [3 ]
Stevenson, Jacob D. [4 ]
Wales, David J. [1 ]
机构
[1] Univ Chem Labs, Lensfield Rd, Cambridge CB2 1EW, England
[2] Univ Notre Dame, Dept Appl & Computat Math & Stat, Notre Dame, IN 46556 USA
[3] NYU, Courant Inst, Dept Math, New York, NY 10003 USA
[4] Microsoft Res Ltd, 21 Stn Rd, Cambridge CB1 2FB, England
基金
英国工程与自然科学研究理事会;
关键词
LENNARD-JONES CLUSTERS; ELASTIC BAND METHOD; MONTE-CARLO; GLOBAL OPTIMIZATION; STATIONARY-POINTS; CONFORMATIONAL-CHANGE; SUPERCOOLED LIQUIDS; TRANSITION NETWORKS; MOLECULAR-DYNAMICS; NEURAL-NETWORKS;
D O I
10.1039/c7cp01108c
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Machine learning techniques are being increasingly used as flexible non-linear fitting and prediction tools in the physical sciences. Fitting functions that exhibit multiple solutions as local minima can be analysed in terms of the corresponding machine learning landscape. Methods to explore and visualise molecular potential energy landscapes can be applied to these machine learning landscapes to gain new insight into the solution space involved in training and the nature of the corresponding predictions. In particular, we can define quantities analogous to molecular structure, thermodynamics, and kinetics, and relate these emergent properties to the structure of the underlying landscape. This Perspective aims to describe these analogies with examples from recent applications, and suggest avenues for new interdisciplinary research.
引用
收藏
页码:12585 / 12603
页数:19
相关论文
共 50 条
  • [1] Energy landscapes for a machine learning application to series data
    Ballard, Andrew J.
    Stevenson, Jacob D.
    Das, Ritankar
    Wales, David J.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2016, 144 (12):
  • [2] Energy landscapes for a machine-learning prediction of patient discharge
    Das, Ritankar
    Wales, David J.
    [J]. PHYSICAL REVIEW E, 2016, 93 (06)
  • [3] Augmenting machine learning of energy landscapes with local structural information
    Honrao, Shreyas J.
    Xie, Stephen R.
    Hennig, Richard G.
    [J]. JOURNAL OF APPLIED PHYSICS, 2020, 128 (08)
  • [4] Machine learning for the structure-energy-property landscapes of molecular crystals
    Musil, Felix
    De, Sandip
    Yang, Jack
    Campbell, Joshua E.
    Day, Graeme M.
    Ceriotti, Michele
    [J]. CHEMICAL SCIENCE, 2018, 9 (05) : 1289 - 1300
  • [5] Machine learning of ab-initio energy landscapes for crystal structure predictions
    Honrao, Shreyas
    Anthonio, Bryan E.
    Ramanathan, Rohit
    Gabriel, Joshua J.
    Hennig, Richard G.
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2019, 158 : 414 - 419
  • [6] Machine learning landscapes and predictions for patient outcomes
    Das, Ritankar
    Wales, David J.
    [J]. ROYAL SOCIETY OPEN SCIENCE, 2017, 4 (07):
  • [7] Machine Learning Testing: Survey, Landscapes and Horizons
    Zhang, Jie M.
    Harman, Mark
    Ma, Lei
    Liu, Yang
    [J]. IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 2022, 48 (01) : 1 - 36
  • [8] Insights into machine learning models from chemical physics: an energy landscapes approach (EL for ML)
    Niroomand, Maximilian P.
    Dicks, Luke
    Pyzer-Knapp, Edward O.
    Wales, David J.
    [J]. DIGITAL DISCOVERY, 2024, 3 (04): : 637 - 648
  • [9] Machine learning to navigate fitness landscapes for protein engineering
    Freschlin, Chase R.
    Fahlberg, Sarah A.
    Romero, Philip A.
    [J]. CURRENT OPINION IN BIOTECHNOLOGY, 2022, 75
  • [10] Exploring the truth and beauty of theory landscapes with machine learning
    Matchev, Konstantin T.
    Matcheva, Katia
    Ramond, Pierre
    Verner, Sarunas
    [J]. PHYSICS LETTERS B, 2024, 856