Energy landscapes for a machine-learning prediction of patient discharge

被引:14
|
作者
Das, Ritankar [1 ]
Wales, David J. [1 ]
机构
[1] Univ Chem Labs, Lensfield Rd, Cambridge CB2 1EW, England
基金
英国工程与自然科学研究理事会;
关键词
MONTE-CARLO; KINETICS; SURFACES; CLUSTERS; PEPTIDE; THERMODYNAMICS; MINIMIZATION; COEXISTENCE; NETWORKS; LIQUIDS;
D O I
10.1103/PhysRevE.93.063310
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The energy landscapes framework is applied to a configuration space generated by training the parameters of a neural network. In this study the input data consists of time series for a collection of vital signs monitored for hospital patients, and the outcomes are patient discharge or continued hospitalisation. Using machine learning as a predictive diagnostic tool to identify patterns in large quantities of electronic health record data in real time is a very attractive approach for supporting clinical decisions, which have the potential to improve patient outcomes and reduce waiting times for discharge. Here we report some preliminary analysis to show how machine learning might be applied. In particular, we visualize the fitting landscape in terms of locally optimal neural networks and the connections between them in parameter space. We anticipate that these results, and analogues of thermodynamic properties for molecular systems, may help in the future design of improved predictive tools.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Supervised Machine-learning Predictive Analytics for Prediction of Postinduction Hypotension
    Kendale, Samir
    Kulkarni, Prathamesh
    Rosenberg, Andrew D.
    Wang, Jing
    [J]. ANESTHESIOLOGY, 2018, 129 (04) : 675 - 688
  • [42] PREDICTION OF SUPERCONDUCTING TRANSITION TEMPERATURE USING A MACHINE-LEARNING METHOD
    Liu, Yao
    Zhang, Huiran
    Xu, Yan
    Li, Shengzhou
    Dai, Dongbo
    Li, Chengfan
    Ding, Guangtai
    Shen, Wenfeng
    Qian, Quan
    [J]. MATERIALI IN TEHNOLOGIJE, 2018, 52 (05): : 639 - 643
  • [43] Machine-Learning Prediction of Atomistic Stress along Grain Boundaries
    Cui, Y.
    Chew, H. B.
    [J]. ACTA MATERIALIA, 2022, 222
  • [44] Analysis and prediction of Indian stock market: a machine-learning approach
    Srivastava, Shilpa
    Pant, Millie
    Gupta, Varuna
    [J]. INTERNATIONAL JOURNAL OF SYSTEM ASSURANCE ENGINEERING AND MANAGEMENT, 2023, 14 (04) : 1567 - 1585
  • [45] Development and validation of a machine-learning model for prediction of shoulder dystocia
    Tsur, A.
    Batsry, L.
    Toussia-Cohen, S.
    Rosenstein, M. G.
    Barak, O.
    Brezinov, Y.
    Yoeli-Ullman, R.
    Sivan, E.
    Sirota, M.
    Druzin, M. L.
    Stevenson, D. K.
    Blumenfeld, Y. J.
    Aran, D.
    [J]. ULTRASOUND IN OBSTETRICS & GYNECOLOGY, 2020, 56 (04) : 588 - 596
  • [46] Hit Dexter: A Machine-Learning Model for the Prediction of Frequent Hitters
    Stork, Conrad
    Wagner, Johannes
    Friedrich, Nils-Ole
    Kops, Christina de Bruyn
    Sicho, Martin
    Kirchmair, Johannes
    [J]. CHEMMEDCHEM, 2018, 13 (06) : 564 - 571
  • [47] Risk estimation and risk prediction using machine-learning methods
    Kruppa, Jochen
    Ziegler, Andreas
    Koenig, Inke R.
    [J]. HUMAN GENETICS, 2012, 131 (10) : 1639 - 1654
  • [48] Developing Machine-Learning Prediction Algorithm for Bacteremia in Admitted Patients
    Mahmoud, Ebrahim
    Al Dhoayan, Mohammed
    Bosaeed, Mohammad
    Al Johani, Sameera
    Arabi, Yaseen M.
    [J]. INFECTION AND DRUG RESISTANCE, 2021, 14 : 757 - 765
  • [49] New machine-learning algorithms for prediction of Parkinson's disease
    Mandal, Indrajit
    Sairam, N.
    [J]. INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2014, 45 (03) : 647 - 666
  • [50] Machine-learning phase prediction of high-entropy alloys
    Huang, Wenjiang
    Martin, Pedro
    Zhuang, Houlong L.
    [J]. ACTA MATERIALIA, 2019, 169 : 225 - 236