Energy landscapes for a machine-learning prediction of patient discharge

被引:14
|
作者
Das, Ritankar [1 ]
Wales, David J. [1 ]
机构
[1] Univ Chem Labs, Lensfield Rd, Cambridge CB2 1EW, England
基金
英国工程与自然科学研究理事会;
关键词
MONTE-CARLO; KINETICS; SURFACES; CLUSTERS; PEPTIDE; THERMODYNAMICS; MINIMIZATION; COEXISTENCE; NETWORKS; LIQUIDS;
D O I
10.1103/PhysRevE.93.063310
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The energy landscapes framework is applied to a configuration space generated by training the parameters of a neural network. In this study the input data consists of time series for a collection of vital signs monitored for hospital patients, and the outcomes are patient discharge or continued hospitalisation. Using machine learning as a predictive diagnostic tool to identify patterns in large quantities of electronic health record data in real time is a very attractive approach for supporting clinical decisions, which have the potential to improve patient outcomes and reduce waiting times for discharge. Here we report some preliminary analysis to show how machine learning might be applied. In particular, we visualize the fitting landscape in terms of locally optimal neural networks and the connections between them in parameter space. We anticipate that these results, and analogues of thermodynamic properties for molecular systems, may help in the future design of improved predictive tools.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Performance Prediction of NUMA Placement: a Machine-Learning Approach
    Arapidis, Fanourios
    Karakostas, Vasileios
    Papadopoulou, Nikela
    Nikas, Konstantinos
    Goumas, Georgios
    Koziris, Nectarios
    [J]. 2018 16TH IEEE INTERNATIONAL CONFERENCE ON CLOUD COMPUTING TECHNOLOGY AND SCIENCE (CLOUDCOM 2018), 2018, : 296 - 301
  • [22] Machine-learning methods for stream water temperature prediction
    Feigl, Moritz
    Lebiedzinski, Katharina
    Herrnegger, Mathew
    Schulz, Karsten
    [J]. HYDROLOGY AND EARTH SYSTEM SCIENCES, 2021, 25 (05) : 2951 - 2977
  • [23] Representation of compounds for machine-learning prediction of physical properties
    Seko, Atsuto
    Hayashi, Hiroyuki
    Nakayama, Keita
    Takahashi, Akira
    Tanaka, Isao
    [J]. PHYSICAL REVIEW B, 2017, 95 (14)
  • [24] Design of Machine-Learning Classifier for Stock Market Prediction
    Srivastava A.K.
    Srivastava A.
    Singh S.
    Sugandha S.
    Tripta
    Gupta S.
    [J]. SN Computer Science, 2022, 3 (1)
  • [25] Machine-learning the configurational energy of multicomponent crystalline solids
    Anirudh Raju Natarajan
    Anton Van der Ven
    [J]. npj Computational Materials, 4
  • [26] Machine-learning the configurational energy of multicomponent crystalline solids
    Natarajan, Anirudh Raju
    Van der Ven, Anton
    [J]. NPJ COMPUTATIONAL MATERIALS, 2018, 4
  • [27] Early prediction of patient discharge disposition in acute neurological care using machine learning
    Charles F. Mickle
    Debzani Deb
    [J]. BMC Health Services Research, 22
  • [28] Early prediction of patient discharge disposition in acute neurological care using machine learning
    Mickle, Charles F.
    Deb, Debzani
    [J]. BMC HEALTH SERVICES RESEARCH, 2022, 22 (01)
  • [29] Prediction of brain maturity in infants using machine-learning algorithms
    Smyser, Christopher D.
    Dosenbach, Nico U. F.
    Smyser, Tara A.
    Snyder, Abraham Z.
    Rogers, Cynthia E.
    Inder, Terrie E.
    Schlaggar, Bradley L.
    Neil, Jeffrey J.
    [J]. NEUROIMAGE, 2016, 136 : 1 - 9
  • [30] Inheritance Pattern Prediction of Retinal Dystrophies: A Machine-Learning Model
    Schlegel, Dana
    Cunningham, Edmond
    Zhang, Xinghai
    Abdulhak, Yaman
    DeOrio, Andrew
    Jayasundera, Thiran
    [J]. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2017, 58 (08)