Performance Prediction of NUMA Placement: a Machine-Learning Approach

被引:1
|
作者
Arapidis, Fanourios [1 ]
Karakostas, Vasileios [1 ]
Papadopoulou, Nikela [1 ]
Nikas, Konstantinos [1 ]
Goumas, Georgios [1 ]
Koziris, Nectarios [1 ]
机构
[1] Natl Tech Univ Athens, Comp Syst Lab, Sch Elect & Comp Engn, ICCS, Athens, Greece
基金
欧盟地平线“2020”;
关键词
performance; modeling; NUMA; placement;
D O I
10.1109/CloudCom2018.2018.00064
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we present a machine-learning approach to predict the impact on performance of core and memory placement in non-uniform memory access (NUMA) systems. The impact on performance depends on the architecture and the application's characteristics. We focus our study on features that can be easily extracted with hardware performance counters that are found in commodity off-the-self systems. We run various single-threaded benchmarks from Spec2006 and Parsec under different placement scenarios, and we use this benchmarking data to train multiple regression models that could serve as performance predictors. Our experimental results show notable accuracy in predicting the impact on performance with relatively simple prediction models.
引用
收藏
页码:296 / 301
页数:6
相关论文
共 50 条
  • [1] Prediction of Nucleophilicity and Electrophilicity Based on a Machine-Learning Approach
    Liu, Yidi
    Yang, Qi
    Cheng, Junjie
    Zhang, Long
    Luo, Sanzhong
    Cheng, Jin-Pei
    [J]. CHEMPHYSCHEM, 2023, 24 (14)
  • [2] Analysis and prediction of Indian stock market: a machine-learning approach
    Shilpa Srivastava
    Millie Pant
    Varuna Gupta
    [J]. International Journal of System Assurance Engineering and Management, 2023, 14 : 1567 - 1585
  • [3] Analysis and prediction of Indian stock market: a machine-learning approach
    Srivastava, Shilpa
    Pant, Millie
    Gupta, Varuna
    [J]. INTERNATIONAL JOURNAL OF SYSTEM ASSURANCE ENGINEERING AND MANAGEMENT, 2023, 14 (04) : 1567 - 1585
  • [4] A machine-learning approach to cardiovascular risk prediction in psoriatic arthritis
    Navarini, Luca
    Sperti, Michela
    Currado, Damiano
    Costa, Luisa
    Deriu, Marco A.
    Margiotta, Domenico Paolo Emanuele
    Tasso, Marco
    Scarpa, Raffaele
    Afeltra, Antonella
    Caso, Francesco
    [J]. RHEUMATOLOGY, 2020, 59 (07) : 1767 - 1769
  • [5] A Machine-Learning Approach for the Prediction of Internal Corrosion in Pipeline Infrastructures
    Canonaco, Giuseppe
    Roveri, Manuel
    Alippi, Cesare
    Podenzani, Fabrizio
    Bennardo, Antonio
    Conti, Marco
    Mancini, Nicola
    [J]. 2021 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC 2021), 2021,
  • [6] Performance of machine-learning approach for prediction of pre-eclampsia in a middle-income country
    Torres-Torres, J.
    Villafan-Bernal, J. R.
    Martinez-Portilla, R. J.
    Hidalgo-Carrera, J. A.
    Estrada-Gutierrez, G.
    Adalid-Martinez-Cisneros, R.
    Rojas-Zepeda, L.
    Acevedo-Gallegos, S.
    Camarena-Cabrera, D. M.
    Cruz-Martinez, M. Y.
    Espino-Y-Sosa, S.
    [J]. ULTRASOUND IN OBSTETRICS & GYNECOLOGY, 2024, 63 (03) : 350 - 357
  • [7] Machine-Learning Aided Peer Prediction
    Liu, Yang
    Chen, Yiling
    [J]. EC'17: PROCEEDINGS OF THE 2017 ACM CONFERENCE ON ECONOMICS AND COMPUTATION, 2017, : 63 - 80
  • [8] A MACHINE-LEARNING APPROACH TO ASSESS AIRCRAFT ENGINE SYSTEM PERFORMANCE
    Tong, Michael T.
    [J]. PROCEEDINGS OF THE ASME TURBO EXPO 2020: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, VOL 1, 2020,
  • [9] Enhancing the Performance of Photonic Sensor Using Machine-Learning Approach
    Dwivedi, Yogendra Swaroop
    Singh, Rishav
    Sharma, Anuj K.
    Sharma, Ajay Kumar
    [J]. IEEE SENSORS JOURNAL, 2023, 23 (03) : 2320 - 2327
  • [10] Prediction of cholinergic compounds by machine-learning
    Wijeyesakere, Sanjeeva J.
    Wilson, Daniel M.
    Sue Marty, Mary
    [J]. Computational Toxicology, 2020, 13