On some canonical classes of cubic-quintic nonlinear Schrodinger equations

被引:0
|
作者
Ozemir, C. [1 ]
机构
[1] Istanbul Tech Univ, Fac Sci & Letters, Dept Math, TR-34469 Istanbul, Turkey
关键词
Nonlinear Schrodinger; Lie symmetry; Blow-up; PARTIAL-DIFFERENTIAL-EQUATIONS; BLOW-UP;
D O I
10.1016/j.jmaa.2016.09.039
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we bring into attention variable coefficient cubic-quintic nonlinear Schrodinger equations which admit Lie symmetry algebras of dimension four. Within this family, we obtain the reductions of canonical equations of nonequivalent classes to ordinary differential equations using tools of Lie theory. Painleve integrability of these reduced equations is investigated. Exact solutions through truncated Painleve expansions are achieved in some cases. One of these solutions, a conformal-group invariant one, exhibits blow-up behavior in finite time in L-p, L-infinity norm and in distributional sense. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:1814 / 1832
页数:19
相关论文
共 50 条
  • [1] Localized waves of the coupled cubic-quintic nonlinear Schrodinger equations in nonlinear optics
    Xu, Tao
    Chen, Yong
    Lin, Ji
    CHINESE PHYSICS B, 2017, 26 (12)
  • [2] Symmetry classification of variable coefficient cubic-quintic nonlinear Schrodinger equations
    Ozemir, C.
    Gungor, F.
    JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (02)
  • [3] Chirped Peregrine solitons in a class of cubic-quintic nonlinear Schrodinger equations
    Chen, Shihua
    Baronio, Fabio
    Soto-Crespo, Jose M.
    Liu, Yi
    Grelu, Philippe
    PHYSICAL REVIEW E, 2016, 93 (06)
  • [4] Conservation laws and solitons for the coupled cubic-quintic nonlinear Schrodinger equations in nonlinear optics
    Shan, Wen-Rui
    Qi, Feng-Hua
    Guo, Rui
    Xue, Yu-Shan
    Wang, Pan
    Tian, Bo
    PHYSICA SCRIPTA, 2012, 85 (01)
  • [5] Rogue wave solutions for the coupled cubic-quintic nonlinear Schrodinger equations in nonlinear optics
    Zhang, Yan
    Nie, Xian-Jia
    Zhaqilao
    PHYSICS LETTERS A, 2014, 378 (03) : 191 - 197
  • [6] Eigenvalue cutoff in the cubic-quintic nonlinear Schrodinger equation
    Prytula, Vladyslav
    Vekslerchik, Vadym
    Perez-Garcia, Victor M.
    PHYSICAL REVIEW E, 2008, 78 (02):
  • [7] Pseudorecurrence and chaos of cubic-quintic nonlinear Schrodinger equation
    Zhou, CT
    Lai, CH
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 1996, 7 (06): : 775 - 786
  • [8] Solitons and Scattering for the Cubic-Quintic Nonlinear Schrodinger Equation on
    Killip, Rowan
    Oh, Tadahiro
    Pocovnicu, Oana
    Visan, Monica
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2017, 225 (01) : 469 - 548
  • [9] Exact solutions for the cubic-quintic nonlinear Schrodinger equation
    Zhu, Jia-Min
    Ma, Zheng-Yi
    CHAOS SOLITONS & FRACTALS, 2007, 33 (03) : 958 - 964
  • [10] Darboux transformation and soliton solutions for the coupled cubic-quintic nonlinear Schrodinger equations in nonlinear optics
    Qi, Feng-Hua
    Tian, Bo
    Lu, Xing
    Guo, Rui
    Xue, Yu-Shan
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (06) : 2372 - 2381