On some canonical classes of cubic-quintic nonlinear Schrodinger equations

被引:0
|
作者
Ozemir, C. [1 ]
机构
[1] Istanbul Tech Univ, Fac Sci & Letters, Dept Math, TR-34469 Istanbul, Turkey
关键词
Nonlinear Schrodinger; Lie symmetry; Blow-up; PARTIAL-DIFFERENTIAL-EQUATIONS; BLOW-UP;
D O I
10.1016/j.jmaa.2016.09.039
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we bring into attention variable coefficient cubic-quintic nonlinear Schrodinger equations which admit Lie symmetry algebras of dimension four. Within this family, we obtain the reductions of canonical equations of nonequivalent classes to ordinary differential equations using tools of Lie theory. Painleve integrability of these reduced equations is investigated. Exact solutions through truncated Painleve expansions are achieved in some cases. One of these solutions, a conformal-group invariant one, exhibits blow-up behavior in finite time in L-p, L-infinity norm and in distributional sense. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:1814 / 1832
页数:19
相关论文
共 50 条
  • [31] Some Exact Solutions of Variable Coefficient Cubic-Quintic Nonlinear Schrodinger Equation with an External Potential
    Zhu Jia-Min
    Liu Yu-Lu
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2009, 51 (03) : 391 - 394
  • [32] Traveling-wave solutions of the cubic-quintic nonlinear Schrodinger equation
    Schurmann, HW
    PHYSICAL REVIEW E, 1996, 54 (04) : 4312 - 4320
  • [33] Interaction of Solitons With Delta Potential In The Cubic-Quintic Nonlinear Schrodinger Equation
    Aklan, Nor Amirah Busul
    Umarov, Bakhram
    2015 INTERNATIONAL CONFERENCE ON RESEARCH AND EDUCATION IN MATHEMATICS (ICREM7), 2015, : 93 - 96
  • [34] The Soliton Scattering of the Cubic-Quintic Nonlinear Schrodinger Equation on the External Potentials
    Aklan, Nor Amirah Busul
    Umarov, Bakhram
    22ND NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM22), 2015, 1682
  • [35] Conservation laws and Darboux transformation for the coupled cubic-quintic nonlinear Schrodinger equations with variable coefficients in nonlinear optics
    Qi, Feng-Hua
    Ju, Hong-Mei
    Meng, Xiang-Hua
    Li, Juan
    NONLINEAR DYNAMICS, 2014, 77 (04) : 1331 - 1337
  • [36] Dynamics of localized electromagnetic waves for a cubic-quintic nonlinear Schrodinger equation
    Douvagai
    Salathiel, Yakada
    Betchewe, Gambo
    Doka, Serge Yamigno
    Crepin, Kofane Timoleon
    EUROPEAN PHYSICAL JOURNAL PLUS, 2015, 130 (03):
  • [37] Vortex solitons in fractional nonlinear Schrodinger equation with the cubic-quintic nonlinearity
    Li, Pengfei
    Malomed, Boris A.
    Mihalache, Dumitru
    CHAOS SOLITONS & FRACTALS, 2020, 137
  • [38] Symbolic computation on the bright soliton solutions for the generalized coupled nonlinear Schrodinger equations with cubic-quintic nonlinearity
    Wang, Pan
    Tian, Bo
    OPTICS COMMUNICATIONS, 2012, 285 (16) : 3567 - 3577
  • [39] On the cubic and cubic-quintic optical vortices equations
    Greco, Carlo
    JOURNAL OF APPLIED ANALYSIS, 2016, 22 (02) : 95 - 105
  • [40] Dark-bright soliton interactions for the coupled cubic-quintic nonlinear Schrodinger equations in fiber optics
    Sun, Wen-Rong
    Tian, Bo
    Zhong, Hui
    Zhen, Hui-Ling
    LASER PHYSICS, 2014, 24 (08)