On some canonical classes of cubic-quintic nonlinear Schrodinger equations

被引:0
|
作者
Ozemir, C. [1 ]
机构
[1] Istanbul Tech Univ, Fac Sci & Letters, Dept Math, TR-34469 Istanbul, Turkey
关键词
Nonlinear Schrodinger; Lie symmetry; Blow-up; PARTIAL-DIFFERENTIAL-EQUATIONS; BLOW-UP;
D O I
10.1016/j.jmaa.2016.09.039
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we bring into attention variable coefficient cubic-quintic nonlinear Schrodinger equations which admit Lie symmetry algebras of dimension four. Within this family, we obtain the reductions of canonical equations of nonequivalent classes to ordinary differential equations using tools of Lie theory. Painleve integrability of these reduced equations is investigated. Exact solutions through truncated Painleve expansions are achieved in some cases. One of these solutions, a conformal-group invariant one, exhibits blow-up behavior in finite time in L-p, L-infinity norm and in distributional sense. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:1814 / 1832
页数:19
相关论文
共 50 条
  • [21] Dynamics of cubic and quintic nonlinear Schrodinger equations
    Hua Wei
    Liu Xue-Shen
    ACTA PHYSICA SINICA, 2011, 60 (11)
  • [22] SOME COMMENTS ON THE OPTICAL CUBIC-QUINTIC SCHRODINGER-EQUATION
    CAFFARO, MAG
    CAFFARO, MG
    OPTIK, 1994, 97 (01): : 4 - 6
  • [23] Soliton Solutions of Cubic-Quintic Nonlinear Schrodinger and Variant Boussinesq Equations by the First Integral Method
    Seadawy, Aly
    Sayed, A.
    FILOMAT, 2017, 31 (13) : 4199 - 4208
  • [24] Higher-Order Rogue Wave Pairs in the Coupled Cubic-Quintic Nonlinear Schrodinger Equations
    Xu, Tao
    Chan, Wai-Hong
    Chen, Yong
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2018, 70 (02) : 153 - 160
  • [25] Solitons for the cubic-quintic nonlinear Schrodinger equation with Raman effect in nonlinear optics
    Wang, Ping
    Shang, Tao
    Feng, Li
    Du, Yingjie
    OPTICAL AND QUANTUM ELECTRONICS, 2014, 46 (09) : 1117 - 1126
  • [26] Optical Solitons for The Cubic-Quintic Nonlinear Schrodinger Equation<bold> </bold>
    Al-Ghafri, K. S.
    Krishnan, E. V.
    Biswas, Anjan
    ICNPAA 2018 WORLD CONGRESS: 12TH INTERNATIONAL CONFERENCE ON MATHEMATICAL PROBLEMS IN ENGINEERING, AEROSPACE AND SCIENCES, 2018, 2046
  • [28] SOLITON SOLUTIONS OF THE CUBIC-QUINTIC NONLINEAR SCHRODINGER EQUATION WITH VARIABLE COEFFICIENTS
    Triki, Houria
    Wazwaz, Abdul-Majid
    ROMANIAN JOURNAL OF PHYSICS, 2016, 61 (3-4): : 360 - 366
  • [29] Stability of spinning ring solitons of the cubic-quintic nonlinear Schrodinger equation
    Towers, I
    Buryak, AV
    Sammut, RA
    Malomed, BA
    Crasovan, LC
    Mihalache, D
    PHYSICS LETTERS A, 2001, 288 (5-6) : 292 - 298
  • [30] Solitary waves for cubic-quintic Nonlinear Schrodinger equation with variable coefficients
    Zhang, JL
    Wang, ML
    Li, XZ
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2006, 45 (02) : 343 - 346