In this paper we bring into attention variable coefficient cubic-quintic nonlinear Schrodinger equations which admit Lie symmetry algebras of dimension four. Within this family, we obtain the reductions of canonical equations of nonequivalent classes to ordinary differential equations using tools of Lie theory. Painleve integrability of these reduced equations is investigated. Exact solutions through truncated Painleve expansions are achieved in some cases. One of these solutions, a conformal-group invariant one, exhibits blow-up behavior in finite time in L-p, L-infinity norm and in distributional sense. (C) 2016 Elsevier Inc. All rights reserved.
机构:
Shenyang Normal Univ, Sch Math & Systemat Sci, Shenyang 110034, Peoples R ChinaShenyang Normal Univ, Sch Math & Systemat Sci, Shenyang 110034, Peoples R China
机构:
San Diego State Univ, Computat Sci Res Ctr, Nonlinear Dynam Syst Grp, San Diego, CA 92182 USA
San Diego State Univ, Dept Math & Stat, San Diego, CA 92182 USAUniv Stuttgart, Inst Anal Dynam & Modellierung, D-70178 Stuttgart, Germany
Carretero-Gonzalez, R.
Malomed, B. A.
论文数: 0引用数: 0
h-index: 0
机构:
Tel Aviv Univ, Fac Engn, Dept Phys Elect, IL-69978 Tel Aviv, IsraelUniv Stuttgart, Inst Anal Dynam & Modellierung, D-70178 Stuttgart, Germany
Malomed, B. A.
Kevrekidis, P. G.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USAUniv Stuttgart, Inst Anal Dynam & Modellierung, D-70178 Stuttgart, Germany