Covering numbers of Gaussian reproducing kernel Hilbert spaces

被引:20
|
作者
Kuehn, Thomas [1 ]
机构
[1] Univ Leipzig, Math Inst, D-04103 Leipzig, Germany
关键词
Covering numbers; Gaussian RKHS; Learning theory; Smooth Gaussian processes; Small deviations; SUPPORT VECTOR MACHINES; METRIC ENTROPY;
D O I
10.1016/j.jco.2011.01.005
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Metric entropy quantities, like covering numbers or entropy numbers, and positive definite kernels play an important role in mathematical learning theory. Using smoothness properties of the Fourier transform of the kernels, Zhou [D.-X. Zhou, The covering number in learning theory, J. Complexity 18 (3) (2002) 739-767] proved an upper estimate for the covering numbers of the unit ball of Gaussian reproducing kernel Hilbert spaces (RKHSs), considered as a subset of the space of continuous functions. In this note we determine the exact asymptotic order of these covering numbers, exploiting an explicit description of Gaussian RKHSs via orthonormal bases. We show that Zhou's estimate is almost sharp (up to a double logarithmic factor), but his conjecture on the correct asymptotic rate is far too optimistic. Moreover we give an application of our entropy results to small deviations of certain smooth Gaussian processes. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:489 / 499
页数:11
相关论文
共 50 条
  • [31] Frames, their relatives and reproducing kernel Hilbert spaces
    Speckbacher, Michael
    Balazs, Peter
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (01)
  • [32] Koopman spectra in reproducing kernel Hilbert spaces
    Das, Suddhasattwa
    Giannakis, Dimitrios
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2020, 49 (02) : 573 - 607
  • [33] Symmetric Operators and Reproducing Kernel Hilbert Spaces
    R. T. W. Martin
    [J]. Complex Analysis and Operator Theory, 2010, 4 : 845 - 880
  • [34] Quantile regression in reproducing kernel Hilbert spaces
    Li, Youjuan
    Liu, Yufeng
    Zhu, Ji
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2007, 102 (477) : 255 - 268
  • [35] ON THE INCLUSION RELATION OF REPRODUCING KERNEL HILBERT SPACES
    Zhang, Haizhang
    Zhao, Liang
    [J]. ANALYSIS AND APPLICATIONS, 2013, 11 (02)
  • [36] Nonlinear expansions in reproducing kernel Hilbert spaces
    Mashreghi, Javad
    Verreault, William
    [J]. SAMPLING THEORY SIGNAL PROCESSING AND DATA ANALYSIS, 2023, 21 (02):
  • [37] Adaptive Estimation in Reproducing Kernel Hilbert Spaces
    Bobade, Parag
    Majumdar, Suprotim
    Pereira, Savio
    Kurdila, Andrew J.
    Ferris, John B.
    [J]. 2017 AMERICAN CONTROL CONFERENCE (ACC), 2017, : 5678 - 5683
  • [38] Interpolation for multipliers on reproducing kernel Hilbert spaces
    Bolotnikov, V
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (05) : 1373 - 1383
  • [39] An explicit construction of a reproducing Gaussian kernel Hilbert space
    Xu, Jian-Wu
    Pokharel, Puskal P.
    Jeong, Kyu-Hwa
    Principe, Jose C.
    [J]. 2006 IEEE International Conference on Acoustics, Speech and Signal Processing, Vols 1-13, 2006, : 5431 - 5434
  • [40] Reproducing kernel Hilbert spaces associated with kernels on topological spaces
    J. C. Ferreira
    V. A. Menegatto
    [J]. Functional Analysis and Its Applications, 2012, 46 : 152 - 154