Robust tracking via discriminative sparse feature selection

被引:11
|
作者
Zhan, Jin [1 ,3 ]
Su, Zhuo [1 ,2 ]
Wu, Hefeng [1 ]
Luo, Xiaonan [1 ]
机构
[1] Sun Yat Sen Univ, Sch Informat Sci & Technol, Natl Engn Res Ctr Digital Life, State Prov Joint Lab Digital Home Interact Applic, Guangzhou 510006, Guangdong, Peoples R China
[2] Sun Yat Sen Univ, Inst Dongguan, Dongguan 523000, Peoples R China
[3] Guangdong Polytech Normal Univ, Inst Comp Sci, Guangzhou 510665, Guangdong, Peoples R China
来源
VISUAL COMPUTER | 2015年 / 31卷 / 05期
基金
中国国家自然科学基金;
关键词
Object tracking; Sparse representation; Template dictionary; Discriminative sparse feature; VISUAL TRACKING; OBJECT TRACKING; MODELS;
D O I
10.1007/s00371-014-0984-8
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper, we propose a novel generative tracking approach based on discriminative sparse feature selection. The sparse features are the discriminative sparse representation of samples, which are achieved by learning a compact and discriminative dictionary. Besides the target templates, the proposed approach also incorporates the close-background templates to approximate the partial variations. We learn the dictionary and a classifier together, and search the tracking result with the maximum similarity and the minimal reconstruction error criterion using the discrimination of sparse features. In addition, we resample the close-background templates and update the dictionary in an adaptive way during tracking. Experimental results on several challenging video sequences demonstrate that the proposed approach has more favorable performance than the state-of-the-art approaches.
引用
收藏
页码:575 / 588
页数:14
相关论文
共 50 条
  • [1] Robust tracking via discriminative sparse feature selection
    Jin Zhan
    Zhuo Su
    Hefeng Wu
    Xiaonan Luo
    [J]. The Visual Computer, 2015, 31 : 575 - 588
  • [2] Robust Visual Tracking via Discriminative Structural Sparse Feature
    Wang, Fenglei
    Zhang, Jun
    Guo, Qiang
    Liu, Pan
    Tu, Dan
    [J]. ADVANCES IN IMAGE AND GRAPHICS TECHNOLOGIES (IGTA 2015), 2015, 525 : 438 - 446
  • [3] Sparse discriminative feature selection
    Yan, Hui
    Yang, Jian
    [J]. PATTERN RECOGNITION, 2015, 48 (05) : 1827 - 1835
  • [4] Robust Visual Tracking via Sparse Feature Selection and Weight Dictionary Update
    Zheng, Penggen
    Zhan, Jin
    Zhao, Huimin
    Wu, Hefeng
    [J]. ADVANCES IN BRAIN INSPIRED COGNITIVE SYSTEMS, BICS 2018, 2018, 10989 : 484 - 494
  • [5] Robust Visual Tracking via Discriminative Sparse Point Matching
    Wen, Hui
    Ge, Shiming
    Yang, Rui
    Chen, Shuixian
    Sun, Limin
    [J]. PROCEEDINGS OF THE 2014 9TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2014, : 1243 - 1246
  • [6] Subspace Sparse Discriminative Feature Selection
    Nie, Feiping
    Wang, Zheng
    Tian, Lai
    Wang, Rong
    Li, Xuelong
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (06) : 4221 - 4233
  • [7] Local sparse discriminative feature selection
    Zhang, Canyu
    Shi, Shaojun
    Chen, Yanping
    Nie, Feiping
    Wang, Rong
    [J]. INFORMATION SCIENCES, 2024, 662
  • [8] Discriminative Feature Selection via A Structured Sparse Subspace Learning Module
    Wang, Zheng
    Nie, Feiping
    Tian, Lai
    Wang, Rong
    Li, Xuelong
    [J]. PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, : 3009 - 3015
  • [9] Discriminative feature selection for visual tracking
    Ma, Junkai
    Luo, Haibo
    Zhou, Wei
    Song, Yingchao
    Hui, Bin
    Chang, Zheng
    [J]. 6TH CONFERENCE ON ADVANCES IN OPTOELECTRONICS AND MICRO/NANO-OPTICS (AOM), 2017, 844
  • [10] Robust visual tracking with discriminative sparse learning
    Lu, Xiaoqiang
    Yuan, Yuan
    Yan, Pingkun
    [J]. PATTERN RECOGNITION, 2013, 46 (07) : 1762 - 1771