Robust Visual Tracking via Discriminative Structural Sparse Feature

被引:4
|
作者
Wang, Fenglei [1 ]
Zhang, Jun [1 ]
Guo, Qiang [1 ]
Liu, Pan [1 ]
Tu, Dan [1 ]
机构
[1] Natl Univ Def Technol, Dept Syst Engn, Coll Informat Syst & Management, Changsha, Hunan, Peoples R China
关键词
Visual tracking; Appearance modeling; Sparse representation; Dictionary learning; OBJECT TRACKING;
D O I
10.1007/978-3-662-47791-5_49
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a robust visual tracking method by exploiting both the structural and the context information. Firstly we take use of the sparse coding's robust to occlusion and illumination and extract the structural local sparse feature, upon which we create a discriminative model between the target and the context. Then we introduce an adaptive online SVM algorithm to searching the feature space and discriminate the target from the context patches. Furthermore, the update of the dictionary and the SVM model consider both the latest observations and the original template, thereby enabling the tracker to deal with appearance change and alleviate the drift problem. Experiments compared with the state of art algorithm demonstrate that the proposed tracker performs excellent in the challenging videos.
引用
收藏
页码:438 / 446
页数:9
相关论文
共 50 条
  • [1] Robust tracking via discriminative sparse feature selection
    Zhan, Jin
    Su, Zhuo
    Wu, Hefeng
    Luo, Xiaonan
    [J]. VISUAL COMPUTER, 2015, 31 (05): : 575 - 588
  • [2] Robust tracking via discriminative sparse feature selection
    Jin Zhan
    Zhuo Su
    Hefeng Wu
    Xiaonan Luo
    [J]. The Visual Computer, 2015, 31 : 575 - 588
  • [3] Robust Visual Tracking via Discriminative Sparse Point Matching
    Wen, Hui
    Ge, Shiming
    Yang, Rui
    Chen, Shuixian
    Sun, Limin
    [J]. PROCEEDINGS OF THE 2014 9TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2014, : 1243 - 1246
  • [4] Robust visual tracking with discriminative sparse learning
    Lu, Xiaoqiang
    Yuan, Yuan
    Yan, Pingkun
    [J]. PATTERN RECOGNITION, 2013, 46 (07) : 1762 - 1771
  • [5] Robust visual tracking via discriminative appearance model based on sparse coding
    Zhao, Hainan
    Wang, Xuan
    [J]. MULTIMEDIA SYSTEMS, 2017, 23 (01) : 75 - 84
  • [6] Robust visual tracking via discriminative appearance model based on sparse coding
    Hainan Zhao
    Xuan Wang
    [J]. Multimedia Systems, 2017, 23 : 75 - 84
  • [7] Incremental visual tracking via sparse discriminative classifier
    Devi, Rajkumari Bidyalakshmi
    Chanu, Yambem Jina
    Singh, Khumanthem Manglem
    [J]. MULTIMEDIA SYSTEMS, 2021, 27 (02) : 287 - 299
  • [8] Incremental visual tracking via sparse discriminative classifier
    Rajkumari Bidyalakshmi Devi
    Yambem Jina Chanu
    Khumanthem Manglem Singh
    [J]. Multimedia Systems, 2021, 27 : 287 - 299
  • [9] Visual Tracking via Discriminative Sparse Similarity Map
    Zhuang, Bohan
    Lu, Huchuan
    Xiao, Ziyang
    Wang, Dong
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2014, 23 (04) : 1872 - 1881
  • [10] Robust visual tracking using discriminative sparse collaborative map
    Zhou, Zhenghua
    Zhang, Weidong
    Zhao, Jianwei
    [J]. INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2019, 10 (11) : 3201 - 3212