Robust Visual Tracking via Discriminative Sparse Point Matching

被引:0
|
作者
Wen, Hui [1 ]
Ge, Shiming [1 ]
Yang, Rui [1 ]
Chen, Shuixian [1 ]
Sun, Limin [1 ]
机构
[1] Chinese Acad Sci, Inst Informat Engn, Beijing Key Lab IOT Informat Secur Technol, Beijing, Peoples R China
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper present a discriminative sparse point matching method (DSPM) for tracking generic objects in vision applications. Different from the conventional tracking methods that involves the construction of high-level or self-learning features, DSPM particularly focuses on a optical flow based point matching optimization method for overcoming the variation of object deformation in motion. The algorithm contains two key issues: a stable point matching method based on the global smoothing constraint with optical flow correspondence and a discriminative sparse point selection strategy for distinguishing the object from its surrounding background. Due to the efficient sparse point matching method, the algorithm is able to track objects that undergo fast motion and considerable shape or appearance variations. The proposed tracking method has been thoroughly evaluated on challenging benchmark video sequences and performs a excellent experimental result.
引用
收藏
页码:1243 / 1246
页数:4
相关论文
共 50 条
  • [1] Robust Visual Tracking via Discriminative Structural Sparse Feature
    Wang, Fenglei
    Zhang, Jun
    Guo, Qiang
    Liu, Pan
    Tu, Dan
    [J]. ADVANCES IN IMAGE AND GRAPHICS TECHNOLOGIES (IGTA 2015), 2015, 525 : 438 - 446
  • [2] Robust visual tracking with discriminative sparse learning
    Lu, Xiaoqiang
    Yuan, Yuan
    Yan, Pingkun
    [J]. PATTERN RECOGNITION, 2013, 46 (07) : 1762 - 1771
  • [3] Robust visual tracking via discriminative appearance model based on sparse coding
    Zhao, Hainan
    Wang, Xuan
    [J]. MULTIMEDIA SYSTEMS, 2017, 23 (01) : 75 - 84
  • [4] Robust visual tracking via discriminative appearance model based on sparse coding
    Hainan Zhao
    Xuan Wang
    [J]. Multimedia Systems, 2017, 23 : 75 - 84
  • [5] Robust tracking via discriminative sparse feature selection
    Zhan, Jin
    Su, Zhuo
    Wu, Hefeng
    Luo, Xiaonan
    [J]. VISUAL COMPUTER, 2015, 31 (05): : 575 - 588
  • [6] Robust tracking via discriminative sparse feature selection
    Jin Zhan
    Zhuo Su
    Hefeng Wu
    Xiaonan Luo
    [J]. The Visual Computer, 2015, 31 : 575 - 588
  • [7] Incremental visual tracking via sparse discriminative classifier
    Devi, Rajkumari Bidyalakshmi
    Chanu, Yambem Jina
    Singh, Khumanthem Manglem
    [J]. MULTIMEDIA SYSTEMS, 2021, 27 (02) : 287 - 299
  • [8] Incremental visual tracking via sparse discriminative classifier
    Rajkumari Bidyalakshmi Devi
    Yambem Jina Chanu
    Khumanthem Manglem Singh
    [J]. Multimedia Systems, 2021, 27 : 287 - 299
  • [9] Visual Tracking via Discriminative Sparse Similarity Map
    Zhuang, Bohan
    Lu, Huchuan
    Xiao, Ziyang
    Wang, Dong
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2014, 23 (04) : 1872 - 1881
  • [10] Robust visual tracking using discriminative sparse collaborative map
    Zhou, Zhenghua
    Zhang, Weidong
    Zhao, Jianwei
    [J]. INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2019, 10 (11) : 3201 - 3212