Robust visual tracking via discriminative appearance model based on sparse coding

被引:4
|
作者
Zhao, Hainan [1 ,2 ,3 ]
Wang, Xuan [1 ,2 ,3 ]
机构
[1] Harbin Inst Technol, Shenzhen Grad Sch, Comp Applicat Res Ctr, Shenzhen, Peoples R China
[2] Shenzhen Appl Technol Engn Lab Internet Multimedi, Shenzhen, Peoples R China
[3] Publ Serv Platform Mobile Internet Applicat Secur, Shenzhen, Peoples R China
关键词
Visual tracking; Local sparse representation; Discriminative appearance model; Template update; OBJECT TRACKING;
D O I
10.1007/s00530-014-0438-1
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we formulate visual tracking as a binary classification problem using a discriminative appearance model. To enhance the discriminative strength of the classifier in separating the object from the background, an over-complete dictionary containing structure information of both object and background is constructed which is used to encode the local patches inside the object region with sparsity constraint. These local sparse codes are then aggregated for object representation, and a classifier is learned to discriminate the target from the background. The candidate sample with largest classification score is considered as the tracking result. Different from recent sparsity-based tracking approaches that update the dictionary using a holistic template, we introduce a selective update strategy based on local image patches which alleviates the visual drift problem, especially when severe occlusion occurs. Experiments on challenging video sequences demonstrate that the proposed tracking algorithm performs favorably against several state-of-the-art methods.
引用
收藏
页码:75 / 84
页数:10
相关论文
共 50 条
  • [1] Robust visual tracking via discriminative appearance model based on sparse coding
    Hainan Zhao
    Xuan Wang
    Multimedia Systems, 2017, 23 : 75 - 84
  • [2] Robust Visual Tracking Using an Effective Appearance Model Based on Sparse Coding
    Zhang, Shengping
    Yao, Hongxun
    Sun, Xin
    Liu, Shaohui
    ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2012, 3 (03)
  • [3] Visual tracking via saliency weighted sparse coding appearance model
    Li, Wanyi
    Wang, Peng
    Qiao, Hong
    2014 22ND INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2014, : 4092 - 4097
  • [4] Robust Visual Tracking via Discriminative Structural Sparse Feature
    Wang, Fenglei
    Zhang, Jun
    Guo, Qiang
    Liu, Pan
    Tu, Dan
    ADVANCES IN IMAGE AND GRAPHICS TECHNOLOGIES (IGTA 2015), 2015, 525 : 438 - 446
  • [5] Robust Visual Tracking via Discriminative Sparse Point Matching
    Wen, Hui
    Ge, Shiming
    Yang, Rui
    Chen, Shuixian
    Sun, Limin
    PROCEEDINGS OF THE 2014 9TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2014, : 1243 - 1246
  • [6] Robust visual tracking via CAMShift and structural local sparse appearance model
    Zhao, Houqiang
    Xiang, Ke
    Cao, Songxiao
    Wang, Xuanyin
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2016, 34 : 176 - 186
  • [7] Robust Visual Tracking via a Collaborative Model Based on Locality-Constrained Sparse Coding
    Hu, Jia
    Fan, Xiaoping
    IEEE ACCESS, 2020, 8 : 76737 - 76751
  • [8] Robust Visual Tracking via Appearance Modeling and Sparse Representation
    Li, Ming
    Ma, Fanglan
    Nian, Fuzhong
    JOURNAL OF COMPUTERS, 2014, 9 (07) : 1612 - 1619
  • [9] ROBUST VISUAL TRACKING VIA DEEP DISCRIMINATIVE MODEL
    Fan, Heng
    Xiang, Jinhai
    Li, Guoliang
    Ni, Fuchuan
    2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2017, : 1927 - 1931
  • [10] Robust visual tracking with discriminative sparse learning
    Lu, Xiaoqiang
    Yuan, Yuan
    Yan, Pingkun
    PATTERN RECOGNITION, 2013, 46 (07) : 1762 - 1771