Robust visual tracking via discriminative appearance model based on sparse coding

被引:4
|
作者
Zhao, Hainan [1 ,2 ,3 ]
Wang, Xuan [1 ,2 ,3 ]
机构
[1] Harbin Inst Technol, Shenzhen Grad Sch, Comp Applicat Res Ctr, Shenzhen, Peoples R China
[2] Shenzhen Appl Technol Engn Lab Internet Multimedi, Shenzhen, Peoples R China
[3] Publ Serv Platform Mobile Internet Applicat Secur, Shenzhen, Peoples R China
关键词
Visual tracking; Local sparse representation; Discriminative appearance model; Template update; OBJECT TRACKING;
D O I
10.1007/s00530-014-0438-1
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we formulate visual tracking as a binary classification problem using a discriminative appearance model. To enhance the discriminative strength of the classifier in separating the object from the background, an over-complete dictionary containing structure information of both object and background is constructed which is used to encode the local patches inside the object region with sparsity constraint. These local sparse codes are then aggregated for object representation, and a classifier is learned to discriminate the target from the background. The candidate sample with largest classification score is considered as the tracking result. Different from recent sparsity-based tracking approaches that update the dictionary using a holistic template, we introduce a selective update strategy based on local image patches which alleviates the visual drift problem, especially when severe occlusion occurs. Experiments on challenging video sequences demonstrate that the proposed tracking algorithm performs favorably against several state-of-the-art methods.
引用
收藏
页码:75 / 84
页数:10
相关论文
共 50 条
  • [31] Visual Tracking via Adaptive Structural Local Sparse Appearance Model
    Jia, Xu
    Lu, Huchuan
    Yang, Ming-Hsuan
    2012 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2012, : 1822 - 1829
  • [32] Robust visual multitask tracking via composite sparse model
    Jin, Bo
    Jing, Zhongliang
    Wang, Meng
    Pan, Han
    JOURNAL OF ELECTRONIC IMAGING, 2014, 23 (06)
  • [33] Incremental visual tracking via sparse discriminative classifier
    Devi, Rajkumari Bidyalakshmi
    Chanu, Yambem Jina
    Singh, Khumanthem Manglem
    MULTIMEDIA SYSTEMS, 2021, 27 (02) : 287 - 299
  • [34] Incremental visual tracking via sparse discriminative classifier
    Rajkumari Bidyalakshmi Devi
    Yambem Jina Chanu
    Khumanthem Manglem Singh
    Multimedia Systems, 2021, 27 : 287 - 299
  • [35] Visual Tracking via Discriminative Sparse Similarity Map
    Zhuang, Bohan
    Lu, Huchuan
    Xiao, Ziyang
    Wang, Dong
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2014, 23 (04) : 1872 - 1881
  • [36] Robust visual tracking based on generative and discriminative model collaboration
    Jianfang Dou
    Qin Qin
    Zimei Tu
    Multimedia Tools and Applications, 2017, 76 : 15839 - 15866
  • [37] Robust visual tracking based on generative and discriminative model collaboration
    Dou, Jianfang
    Qin, Qin
    Tu, Zimei
    MULTIMEDIA TOOLS AND APPLICATIONS, 2017, 76 (14) : 15839 - 15866
  • [38] Robust visual tracking using discriminative sparse collaborative map
    Zhou, Zhenghua
    Zhang, Weidong
    Zhao, Jianwei
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2019, 10 (11) : 3201 - 3212
  • [39] Robust Visual Tracking Using Sparse Discriminative Graph Embedding
    Zhao, Jidong
    Li, Jingjing
    Lu, Ke
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2015, E98D (04): : 938 - 947
  • [40] Robust visual tracking using discriminative sparse collaborative map
    Zhenghua Zhou
    Weidong Zhang
    Jianwei Zhao
    International Journal of Machine Learning and Cybernetics, 2019, 10 : 3201 - 3212