Robust visual tracking via discriminative appearance model based on sparse coding

被引:4
|
作者
Zhao, Hainan [1 ,2 ,3 ]
Wang, Xuan [1 ,2 ,3 ]
机构
[1] Harbin Inst Technol, Shenzhen Grad Sch, Comp Applicat Res Ctr, Shenzhen, Peoples R China
[2] Shenzhen Appl Technol Engn Lab Internet Multimedi, Shenzhen, Peoples R China
[3] Publ Serv Platform Mobile Internet Applicat Secur, Shenzhen, Peoples R China
关键词
Visual tracking; Local sparse representation; Discriminative appearance model; Template update; OBJECT TRACKING;
D O I
10.1007/s00530-014-0438-1
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we formulate visual tracking as a binary classification problem using a discriminative appearance model. To enhance the discriminative strength of the classifier in separating the object from the background, an over-complete dictionary containing structure information of both object and background is constructed which is used to encode the local patches inside the object region with sparsity constraint. These local sparse codes are then aggregated for object representation, and a classifier is learned to discriminate the target from the background. The candidate sample with largest classification score is considered as the tracking result. Different from recent sparsity-based tracking approaches that update the dictionary using a holistic template, we introduce a selective update strategy based on local image patches which alleviates the visual drift problem, especially when severe occlusion occurs. Experiments on challenging video sequences demonstrate that the proposed tracking algorithm performs favorably against several state-of-the-art methods.
引用
收藏
页码:75 / 84
页数:10
相关论文
共 50 条
  • [41] VISUAL TRACKING VIA ORTHOGONAL SPARSE CODING
    Wang, Jing
    Wang, Yiyang
    Liu, Risheng
    Su, Zhixun
    2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 3817 - 3821
  • [42] Robust object tracking via online discriminative appearance modeling
    Liu, Wei
    Sun, Xin
    Li, Dong
    EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2019, 2019 (01)
  • [43] Robust object tracking via online discriminative appearance modeling
    Wei Liu
    Xin Sun
    Dong Li
    EURASIP Journal on Advances in Signal Processing, 2019
  • [44] Robust object tracking based on local region sparse appearance model
    Han, Guang
    Wang, Xingyue
    Liu, Jixin
    Sun, Ning
    Wang, Cailing
    NEUROCOMPUTING, 2016, 184 : 145 - 167
  • [45] ROBUST VISUAL TRACKING VIA DISCRIMINATIVE SEQUENTIAL RANKING
    Zhong, Guangyu
    Liu, Risheng
    Su, Zhixun
    2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 1354 - 1358
  • [46] ROBUST VISUAL TRACKING VIA DISCRIMINATIVE SEQUENTIAL RANKING
    Zhong, Guangyu
    Liu, Risheng
    Su, Zhixun
    2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 4942 - 4946
  • [47] Visual tracking via context-aware local sparse appearance model
    Li, Guiji
    Peng, Manman
    Nai, Ke
    Li, Zhiyong
    Li, Keqin
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2018, 56 : 92 - 105
  • [48] Robust visual tracking of infrared object via sparse representation model
    Ma, Junkai
    Luo, Haibo
    Chang, Zheng
    Hui, Bin
    INTERNATIONAL SYMPOSIUM ON OPTOELECTRONIC TECHNOLOGY AND APPLICATION 2014: IMAGE PROCESSING AND PATTERN RECOGNITION, 2014, 9301
  • [49] Robust Visual Tracking Using Local Sparse Appearance Model and K-Selection
    Liu, Baiyang
    Huang, Junzhou
    Kulikowski, Casimir
    Yang, Lin
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (12) : 2968 - 2981
  • [50] Robust visual tracking based on structured sparse representation model
    Hanling Zhang
    Fei Tao
    Gaobo Yang
    Multimedia Tools and Applications, 2015, 74 : 1021 - 1043