Robust Visual Tracking via Sparse Feature Selection and Weight Dictionary Update

被引:0
|
作者
Zheng, Penggen [1 ,2 ]
Zhan, Jin [1 ,2 ]
Zhao, Huimin [1 ,2 ]
Wu, Hefeng [3 ]
机构
[1] Guangdong Polytechn Normal Univ, Sch Comp Sci, Guangzhou, Peoples R China
[2] Guangzhou Key Lab Digital Content Proc & Secur Te, Guangzhou, Peoples R China
[3] Guangdong Univ Foreign Studies, Sch Informat Sci & Technol, Guangzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Visual tracking; Similarity weights; Sparse representation; Adaptive update; Multi-feature selection;
D O I
10.1007/978-3-030-00563-4_47
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Sparse representation-based visual tracking methods do not adapt well to changes in the target and backgrounds, and the sparseness of samples does not guarantee optimality. In this paper, we propose a robust visual tracking algorithm using sparse multi-feature selection and adaptive dictionary update based on weight dictionaries. We exploit the color features and texture features of the learning samples to obtain different discriminative dictionaries based on the label consistent K-SVD algorithm, and use the position information of those samples to assign weights to the dictionaries' base vectors, forming the weight dictionaries. For robust visual tracking, we adopt a novel feature selection strategy that combines the weights of dictionaries' base vectors and reconstruction errors to select the best sample. In addition, we introduce adaptive noise energy thresholds and establish a dictionary updating mechanism based on noise energy analysis, which effectively reduces the error accumulation caused by dictionary updating and enhances the adaptability to target and background changes. Comparison experiments show that the proposed algorithm performs favorably against several state-of-the-art methods.
引用
收藏
页码:484 / 494
页数:11
相关论文
共 50 条
  • [1] Robust tracking via discriminative sparse feature selection
    Zhan, Jin
    Su, Zhuo
    Wu, Hefeng
    Luo, Xiaonan
    [J]. VISUAL COMPUTER, 2015, 31 (05): : 575 - 588
  • [2] Robust tracking via discriminative sparse feature selection
    Jin Zhan
    Zhuo Su
    Hefeng Wu
    Xiaonan Luo
    [J]. The Visual Computer, 2015, 31 : 575 - 588
  • [3] Robust Visual Tracking via Discriminative Structural Sparse Feature
    Wang, Fenglei
    Zhang, Jun
    Guo, Qiang
    Liu, Pan
    Tu, Dan
    [J]. ADVANCES IN IMAGE AND GRAPHICS TECHNOLOGIES (IGTA 2015), 2015, 525 : 438 - 446
  • [4] Robust visual tracking for UAVs with dynamic feature weight selection
    Zhiyong An
    Xiumin Wang
    Bo Li
    Zhongliang Xiang
    Bin Zhang
    [J]. Applied Intelligence, 2023, 53 : 3836 - 3849
  • [5] Robust visual tracking for UAVs with dynamic feature weight selection
    An, Zhiyong
    Wang, Xiumin
    Li, Bo
    Xiang, Zhongliang
    Zhang, Bin
    [J]. APPLIED INTELLIGENCE, 2023, 53 (04) : 3836 - 3849
  • [6] Robust visual tracking via online informative feature selection
    Song, Huihui
    [J]. ELECTRONICS LETTERS, 2014, 50 (25) : 1931 - 1932
  • [7] Robust visual tracking via adaptive feature channel selection
    Ma, Sugang
    Zhang, Lei
    Hou, Zhiqiang
    Yang, Xiaobao
    Pu, Lei
    Zhao, Xiangmo
    [J]. INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2022, 37 (10) : 6951 - 6977
  • [8] Visual Tracking via Sparse Representation and Online Dictionary Learning
    Cheng, Xu
    Li, Nijun
    Zhou, Tongchi
    Zhou, Lin
    Wu, Zhenyang
    [J]. ACTIVITY MONITORING BY MULTIPLE DISTRIBUTED SENSING, 2014, 8703 : 87 - 103
  • [9] Robust Visual Tracking Based on Gabor Feature and Sparse Representation
    Li, Weiguang
    Hou, Yueen
    Lou, Huidong
    Ye, Guoqiang
    [J]. 2012 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (ROBIO 2012), 2012,
  • [10] Robust Visual Tracking Based on Online Learning of a Joint Sparse Dictionary
    Li, Qiaozhe
    Qiao, Yu
    Yang, Jie
    Bai, Li
    [J]. SIXTH INTERNATIONAL CONFERENCE ON MACHINE VISION (ICMV 2013), 2013, 9067