Robust tracking via discriminative sparse feature selection

被引:11
|
作者
Zhan, Jin [1 ,3 ]
Su, Zhuo [1 ,2 ]
Wu, Hefeng [1 ]
Luo, Xiaonan [1 ]
机构
[1] Sun Yat Sen Univ, Sch Informat Sci & Technol, Natl Engn Res Ctr Digital Life, State Prov Joint Lab Digital Home Interact Applic, Guangzhou 510006, Guangdong, Peoples R China
[2] Sun Yat Sen Univ, Inst Dongguan, Dongguan 523000, Peoples R China
[3] Guangdong Polytech Normal Univ, Inst Comp Sci, Guangzhou 510665, Guangdong, Peoples R China
来源
VISUAL COMPUTER | 2015年 / 31卷 / 05期
基金
中国国家自然科学基金;
关键词
Object tracking; Sparse representation; Template dictionary; Discriminative sparse feature; VISUAL TRACKING; OBJECT TRACKING; MODELS;
D O I
10.1007/s00371-014-0984-8
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper, we propose a novel generative tracking approach based on discriminative sparse feature selection. The sparse features are the discriminative sparse representation of samples, which are achieved by learning a compact and discriminative dictionary. Besides the target templates, the proposed approach also incorporates the close-background templates to approximate the partial variations. We learn the dictionary and a classifier together, and search the tracking result with the maximum similarity and the minimal reconstruction error criterion using the discrimination of sparse features. In addition, we resample the close-background templates and update the dictionary in an adaptive way during tracking. Experimental results on several challenging video sequences demonstrate that the proposed approach has more favorable performance than the state-of-the-art approaches.
引用
收藏
页码:575 / 588
页数:14
相关论文
共 50 条
  • [31] Robust object tracking based on local discriminative sparse representation
    Wang, Xin
    Shen, Sou
    Ning, Chen
    Zhang, Yuzhen
    Lv, Guofang
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2017, 34 (04) : 533 - 544
  • [32] Jointly Feature Learning and Selection for Robust Tracking via a Gating Mechanism
    Zhong, Bineng
    Zhang, Jun
    Wang, Pengfei
    Du, Jixiang
    Chen, Duansheng
    [J]. PLOS ONE, 2016, 11 (08):
  • [33] Incremental visual tracking via sparse discriminative classifier
    Devi, Rajkumari Bidyalakshmi
    Chanu, Yambem Jina
    Singh, Khumanthem Manglem
    [J]. MULTIMEDIA SYSTEMS, 2021, 27 (02) : 287 - 299
  • [34] Incremental visual tracking via sparse discriminative classifier
    Rajkumari Bidyalakshmi Devi
    Yambem Jina Chanu
    Khumanthem Manglem Singh
    [J]. Multimedia Systems, 2021, 27 : 287 - 299
  • [35] Visual Tracking via Discriminative Sparse Similarity Map
    Zhuang, Bohan
    Lu, Huchuan
    Xiao, Ziyang
    Wang, Dong
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2014, 23 (04) : 1872 - 1881
  • [36] Local discriminative based sparse subspace learning for feature selection
    Shang, Ronghua
    Meng, Yang
    Wang, Wenbing
    Shang, Fanhua
    Jiao, Licheng
    [J]. PATTERN RECOGNITION, 2019, 92 : 219 - 230
  • [37] Sparse robust multiview feature selection via adaptive-weighting strategy
    Zhi Wang
    Jing Zhong
    Yuqing Chen
    Ping Zhong
    [J]. International Journal of Machine Learning and Cybernetics, 2022, 13 : 1387 - 1408
  • [38] Robust feature selection via simultaneous sapped norm and sparse regularizer minimization
    Lan, Gongmin
    Hou, Chenping
    Nie, Feiping
    Luo, Tingjin
    Yi, Dongyun
    [J]. NEUROCOMPUTING, 2018, 283 : 228 - 240
  • [39] Sparse robust multiview feature selection via adaptive-weighting strategy
    Wang, Zhi
    Zhong, Jing
    Chen, Yuqing
    Zhong, Ping
    [J]. INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2022, 13 (05) : 1387 - 1408
  • [40] Multi-label feature selection via robust flexible sparse regularization
    Li, Yonghao
    Hu, Liang
    Gao, Wanfu
    [J]. PATTERN RECOGNITION, 2023, 134