Robust tracking via discriminative sparse feature selection

被引:11
|
作者
Zhan, Jin [1 ,3 ]
Su, Zhuo [1 ,2 ]
Wu, Hefeng [1 ]
Luo, Xiaonan [1 ]
机构
[1] Sun Yat Sen Univ, Sch Informat Sci & Technol, Natl Engn Res Ctr Digital Life, State Prov Joint Lab Digital Home Interact Applic, Guangzhou 510006, Guangdong, Peoples R China
[2] Sun Yat Sen Univ, Inst Dongguan, Dongguan 523000, Peoples R China
[3] Guangdong Polytech Normal Univ, Inst Comp Sci, Guangzhou 510665, Guangdong, Peoples R China
来源
VISUAL COMPUTER | 2015年 / 31卷 / 05期
基金
中国国家自然科学基金;
关键词
Object tracking; Sparse representation; Template dictionary; Discriminative sparse feature; VISUAL TRACKING; OBJECT TRACKING; MODELS;
D O I
10.1007/s00371-014-0984-8
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper, we propose a novel generative tracking approach based on discriminative sparse feature selection. The sparse features are the discriminative sparse representation of samples, which are achieved by learning a compact and discriminative dictionary. Besides the target templates, the proposed approach also incorporates the close-background templates to approximate the partial variations. We learn the dictionary and a classifier together, and search the tracking result with the maximum similarity and the minimal reconstruction error criterion using the discrimination of sparse features. In addition, we resample the close-background templates and update the dictionary in an adaptive way during tracking. Experimental results on several challenging video sequences demonstrate that the proposed approach has more favorable performance than the state-of-the-art approaches.
引用
收藏
页码:575 / 588
页数:14
相关论文
共 50 条
  • [21] Discriminative and Robust Autoencoders for Unsupervised Feature Selection
    Ling, Yunzhi
    Nie, Feiping
    Yu, Weizhong
    Li, Xuelong
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, : 1 - 15
  • [22] ROBUST OBJECT TRACKING VIA ONLINE INFORMATIVE FEATURE SELECTION
    Yuan, Jinwei
    Bastani, Farokh B.
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 471 - 475
  • [23] Robust visual tracking via online informative feature selection
    Song, Huihui
    [J]. ELECTRONICS LETTERS, 2014, 50 (25) : 1931 - 1932
  • [24] Robust visual tracking via adaptive feature channel selection
    Ma, Sugang
    Zhang, Lei
    Hou, Zhiqiang
    Yang, Xiaobao
    Pu, Lei
    Zhao, Xiangmo
    [J]. INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2022, 37 (10) : 6951 - 6977
  • [25] Robust Feature Selection with Feature Correlation via Sparse Multi-Label Learning
    Jiangjiang Cheng
    Junmei Mei
    Jing Zhong
    Min Men
    Ping Zhong
    [J]. Pattern Recognition and Image Analysis, 2020, 30 : 52 - 62
  • [26] Robust Feature Selection with Feature Correlation via Sparse Multi-Label Learning
    Cheng, Jiangjiang
    Mei, Junmei
    Zhong, Jing
    Men, Min
    Zhong, Ping
    [J]. PATTERN RECOGNITION AND IMAGE ANALYSIS, 2020, 30 (01) : 52 - 62
  • [27] Learning Adaptive Discriminative Correlation Filters via Temporal Consistency Preserving Spatial Feature Selection for Robust Visual Object Tracking
    Xu, Tianyang
    Feng, Zhen-Hua
    Wu, Xiao-Jun
    Kittler, Josef
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (11) : 5596 - 5609
  • [28] Robust visual tracking using discriminative sparse collaborative map
    Zhou, Zhenghua
    Zhang, Weidong
    Zhao, Jianwei
    [J]. INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2019, 10 (11) : 3201 - 3212
  • [29] Robust Visual Tracking Using Sparse Discriminative Graph Embedding
    Zhao, Jidong
    Li, Jingjing
    Lu, Ke
    [J]. IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2015, E98D (04): : 938 - 947
  • [30] Robust visual tracking using discriminative sparse collaborative map
    Zhenghua Zhou
    Weidong Zhang
    Jianwei Zhao
    [J]. International Journal of Machine Learning and Cybernetics, 2019, 10 : 3201 - 3212