THREE-DIMENSIONAL LORENTZIAN PARA-KENMOTSU MANIFOLDS AND YAMABE SOLITONS

被引:4
|
作者
Pankaj [1 ]
Chaubey, Sudhakar K. [2 ]
Prasad, Rajendra [3 ]
机构
[1] Univ Technol & Appl Sci Muscat, Math Sect, IT Dept, Muscat, Oman
[2] Univ Technol & Appl Sci Shinas, Dept Informat Technol, Sect Math, POB 77, Shinas 324, Oman
[3] Univ Lucknow, Dept Math & Astron, Lucknow, Uttar Pradesh, India
来源
HONAM MATHEMATICAL JOURNAL | 2021年 / 43卷 / 04期
关键词
Yamabe Soliton; eta-Yamabe soliton; Lorentzian para-Kenmotsu manifolds; curvature tensor; eta-Einstein manifold;
D O I
10.5831/HMJ.2021.43.4.613
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of the present work is to study the properties of three-dimensional Lorentzian para-Kenmotsu manifolds equipped with a Yamabe soliton. It is proved that every three-dimensional Lorentzian para-Kenmotsu manifold is Ricci semi-symmetric if and only if it is Einstein. Also, if the metric of a three-dimensional semi-symmetric Lorentzian para-Kenmotsu manifold is a Yamabe soliton, then the soliton is shrinking and the flow vector field is Killing. We also study the properties of three-dimensional Ricci symmetric and eta-parallel Lorentzian para-Kenmotsu manifolds with Yamabe solitons. Finally, we give a non-trivial example of three-dimensional Lorentzian para-Kenmotsu manifold.
引用
收藏
页码:613 / 626
页数:14
相关论文
共 50 条
  • [31] Yamabe solitons on three-dimensional normal almost paracontact metric manifolds
    Kupeli Erken, Irem
    PERIODICA MATHEMATICA HUNGARICA, 2020, 80 (02) : 172 - 184
  • [32] Yamabe Solitons on Three-Dimensional N(k)-Paracontact Metric Manifolds
    Young Jin Suh
    Krishanu Mandal
    Bulletin of the Iranian Mathematical Society, 2018, 44 : 183 - 191
  • [33] Yamabe Solitons on Three-Dimensional N(k)-Paracontact Metric Manifolds
    Suh, Young Jin
    Mandal, Krishanu
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2018, 44 (01): : 183 - 191
  • [34] ON GENERALIZED PROJECTIVE CURVATURE TENSOR OF PARA-KENMOTSU MANIFOLDS
    Raghuwanshi, Teerathram
    Pandey, Giteshwari
    Pandey, Manoj Kumar
    Goyal, Anil
    MISKOLC MATHEMATICAL NOTES, 2023, 24 (01) : 383 - 394
  • [35] Yamabe solitons on three-dimensional normal almost paracontact metric manifolds
    Irem Küpeli Erken
    Periodica Mathematica Hungarica, 2020, 80 : 172 - 184
  • [36] k-ALMOST YAMABE SOLITONS ON KENMOTSU MANIFOLDS
    De, Krishnendu
    De, Uday Chand
    HONAM MATHEMATICAL JOURNAL, 2021, 43 (01): : 115 - 122
  • [37] On Kenmotsu manifolds admitting η-Ricci-Yamabe solitons
    Yoldas, Halil Ibrahim
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2021, 18 (12)
  • [38] On Three-Dimensional CR Yamabe Solitons
    Huai-Dong Cao
    Shu-Cheng Chang
    Chih-Wei Chen
    The Journal of Geometric Analysis, 2018, 28 : 335 - 359
  • [39] On Three-Dimensional CR Yamabe Solitons
    Cao, Huai-Dong
    Chang, Shu-Cheng
    Chen, Chih-Wei
    JOURNAL OF GEOMETRIC ANALYSIS, 2018, 28 (01) : 335 - 359
  • [40] Characterization of almost *-conformal η-Ricci soliton on para-Kenmotsu manifolds
    Dey, Santu
    Uddin, Siraj
    FILOMAT, 2023, 37 (11) : 3601 - 3614