THREE-DIMENSIONAL LORENTZIAN PARA-KENMOTSU MANIFOLDS AND YAMABE SOLITONS

被引:4
|
作者
Pankaj [1 ]
Chaubey, Sudhakar K. [2 ]
Prasad, Rajendra [3 ]
机构
[1] Univ Technol & Appl Sci Muscat, Math Sect, IT Dept, Muscat, Oman
[2] Univ Technol & Appl Sci Shinas, Dept Informat Technol, Sect Math, POB 77, Shinas 324, Oman
[3] Univ Lucknow, Dept Math & Astron, Lucknow, Uttar Pradesh, India
来源
HONAM MATHEMATICAL JOURNAL | 2021年 / 43卷 / 04期
关键词
Yamabe Soliton; eta-Yamabe soliton; Lorentzian para-Kenmotsu manifolds; curvature tensor; eta-Einstein manifold;
D O I
10.5831/HMJ.2021.43.4.613
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of the present work is to study the properties of three-dimensional Lorentzian para-Kenmotsu manifolds equipped with a Yamabe soliton. It is proved that every three-dimensional Lorentzian para-Kenmotsu manifold is Ricci semi-symmetric if and only if it is Einstein. Also, if the metric of a three-dimensional semi-symmetric Lorentzian para-Kenmotsu manifold is a Yamabe soliton, then the soliton is shrinking and the flow vector field is Killing. We also study the properties of three-dimensional Ricci symmetric and eta-parallel Lorentzian para-Kenmotsu manifolds with Yamabe solitons. Finally, we give a non-trivial example of three-dimensional Lorentzian para-Kenmotsu manifold.
引用
收藏
页码:613 / 626
页数:14
相关论文
共 50 条
  • [41] On a class of Lorentzian para-Kenmotsu manifolds admitting the Weyl-projective curvature tensor of type (1, 3)
    Prasad, K. L. Sai
    Devi, S. Sunitha
    Deekshitulu, G. V. S. R.
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2021, (45): : 990 - 1001
  • [42] Para-Kenmotsu manifolds admitting semi-symmetric structures
    Sarkar, Nihar
    Baishya, Kanak Kanti
    Blaga, Adara M.
    ACTA UNIVERSITATIS SAPIENTIAE-MATHEMATICA, 2021, 13 (02) : 468 - 482
  • [43] A Note on Yamabe Solitons on 3-dimensional Almost Kenmotsu Manifolds with Qφ = φQ
    Ghosh, Gopal
    INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2023, 16 (01): : 196 - 200
  • [44] Certain properties of η-Ricci soliton on η-Einstein para-Kenmotsu manifolds
    Almia, Priyanka
    Upreti, Jaya
    FILOMAT, 2023, 37 (28) : 9575 - 9585
  • [45] Almost Ricci-Yamabe solitons on Almost Kenmotsu manifolds
    Khatri, Mohan
    Singh, Jay Prakash
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2023, 16 (08)
  • [46] Geometry of Indefinite Kenmotsu Manifolds as *η-Ricci-Yamabe Solitons
    Haseeb, Abdul
    Bilal, Mohd
    Chaubey, Sudhakar K.
    Khan, Mohammad Nazrul Islam
    AXIOMS, 2022, 11 (09)
  • [47] CHARACTERISTICS OF LORENTZIAN-PARA KENMOTSU SPACETIME MANIFOLDS
    Kumar, Vinay
    Prasad, Rajendra
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2024, 39 (04): : 965 - 976
  • [48] Ricci-Yamabe Solitons and Gradient Ricci-Yamabe Solitons on Kenmotsu 3-manifolds
    Sardar, Arpan
    Sarkar, Avijit
    KYUNGPOOK MATHEMATICAL JOURNAL, 2021, 61 (04): : 813 - 822
  • [49] CERTAIN RESULTS ON THREE-DIMENSIONAL f-KENMOTSU MANIFOLDS WITH CONFORMAL RICCI SOLITONS
    Mandal, Tarak
    KOREAN JOURNAL OF MATHEMATICS, 2022, 30 (01): : 1 - 10
  • [50] On some curves in three-dimensional β-Kenmotsu manifolds
    Bozdag, Serife Nur
    Perktas, Selcen Yuksel
    Erdogan, Feyza Esra
    ARABIAN JOURNAL OF MATHEMATICS, 2023, 12 (01) : 89 - 103