THREE-DIMENSIONAL LORENTZIAN PARA-KENMOTSU MANIFOLDS AND YAMABE SOLITONS

被引:4
|
作者
Pankaj [1 ]
Chaubey, Sudhakar K. [2 ]
Prasad, Rajendra [3 ]
机构
[1] Univ Technol & Appl Sci Muscat, Math Sect, IT Dept, Muscat, Oman
[2] Univ Technol & Appl Sci Shinas, Dept Informat Technol, Sect Math, POB 77, Shinas 324, Oman
[3] Univ Lucknow, Dept Math & Astron, Lucknow, Uttar Pradesh, India
来源
HONAM MATHEMATICAL JOURNAL | 2021年 / 43卷 / 04期
关键词
Yamabe Soliton; eta-Yamabe soliton; Lorentzian para-Kenmotsu manifolds; curvature tensor; eta-Einstein manifold;
D O I
10.5831/HMJ.2021.43.4.613
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of the present work is to study the properties of three-dimensional Lorentzian para-Kenmotsu manifolds equipped with a Yamabe soliton. It is proved that every three-dimensional Lorentzian para-Kenmotsu manifold is Ricci semi-symmetric if and only if it is Einstein. Also, if the metric of a three-dimensional semi-symmetric Lorentzian para-Kenmotsu manifold is a Yamabe soliton, then the soliton is shrinking and the flow vector field is Killing. We also study the properties of three-dimensional Ricci symmetric and eta-parallel Lorentzian para-Kenmotsu manifolds with Yamabe solitons. Finally, we give a non-trivial example of three-dimensional Lorentzian para-Kenmotsu manifold.
引用
收藏
页码:613 / 626
页数:14
相关论文
共 50 条
  • [21] RICCI SOLITONS ON THREE-DIMENSIONAL η-EINSTEIN ALMOST KENMOTSU MANIFOLDS
    Wang, Yaning
    Liu, Ximin
    TAIWANESE JOURNAL OF MATHEMATICS, 2015, 19 (01): : 91 - 100
  • [22] Invariant and holomorphic distributions on para-Kenmotsu manifolds
    Blaga A.M.
    ANNALI DELL'UNIVERSITA' DI FERRARA, 2015, 61 (2) : 263 - 276
  • [23] CLASSIFICATION OF SOME ALMOST α-PARA-KENMOTSU MANIFOLDS
    Pan, Quanxiang
    Liu, Ximin
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2020, 35 (05): : 1327 - 1341
  • [24] Almost Kenmotsu (k, μ)′-manifolds with Yamabe solitons
    Wang, Yaning
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 115 (01)
  • [25] RICCI SOLITONS AND RICCI ALMOST SOLITONS ON PARA-KENMOTSU MANIFOLD
    Patra, Dhriti Sundar
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 56 (05) : 1315 - 1325
  • [26] Generalized Ricci Solitons on Three-Dimensional Lorentzian Walker Manifolds
    Vahid Pirhadi
    Ghodratallah Fasihi-Ramandi
    Shahroud Azami
    Journal of Nonlinear Mathematical Physics, 2023, 30 : 1409 - 1423
  • [27] Generalized Ricci Solitons on Three-Dimensional Lorentzian Walker Manifolds
    Pirhadi, Vahid
    Fasihi-Ramandi, Ghodratallah
    Azami, Shahroud
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2023, 30 (04) : 1409 - 1423
  • [28] ON ALMOST α-PARA-KENMOTSU MANIFOLDS SATISFYING CERTAIN CONDITIONS
    Erken, I. Kupeli
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2019, 68 (01): : 559 - 571
  • [29] A NOTE ON EINSTEIN-LIKE PARA-KENMOTSU MANIFOLDS
    Prasad, Rajendra
    Verma, Sandeep Kumar
    Kumar, Sumeet
    HONAM MATHEMATICAL JOURNAL, 2019, 41 (04): : 669 - 682
  • [30] CERTAIN RESULTS ON INVARIANT SUBMANIFOLDS OF PARA-KENMOTSU MANIFOLDS
    Atceken, Mehmet
    HONAM MATHEMATICAL JOURNAL, 2021, 43 (01): : 35 - 46