Almost Kenmotsu (k, μ)′-manifolds with Yamabe solitons

被引:0
|
作者
Wang, Yaning [1 ]
机构
[1] Henan Normal Univ, Sch Math & Informat Sci, Xinxiang 453007, Henan, Peoples R China
关键词
Almost Kenmotsu (k; mu)'-manifold; (Gradient) Yamabe soliton; Infinitesimal contact transformation;
D O I
10.1007/s13398-020-00951-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (M2n+1, phi, xi, eta, g) be a non-Kenmotsu almost Kenmotsu (k, mu)'-manifold. If the metric g represents a Yamabe soliton, then either M2n+1 is locally isometric to the product space Hn+1(-4) x R-n or eta is a strict infinitesimal contact transformation. The later case can not occur if a Yamabe soliton is replaced by a gradient Yamabe soliton. Some corollaries of this theorem are given and an example illustrating this theorem is constructed.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] k-ALMOST YAMABE SOLITONS ON KENMOTSU MANIFOLDS
    De, Krishnendu
    De, Uday Chand
    [J]. HONAM MATHEMATICAL JOURNAL, 2021, 43 (01): : 115 - 122
  • [2] Almost Ricci-Yamabe solitons on Almost Kenmotsu manifolds
    Khatri, Mohan
    Singh, Jay Prakash
    [J]. ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2023, 16 (08)
  • [3] YAMABE SOLITONS ON KENMOTSU MANIFOLDS
    Hui, Shyamal Kumar
    Mandal, Yadab Chandra
    [J]. COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 34 (01): : 321 - 331
  • [4] Almost quasi-Yamabe solitons and gradient almost quasi-Yamabe solitons in f-kenmotsu manifolds
    Ghosh, Sujit
    De, Uday Chand
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2021, 18 (11)
  • [5] The k-almost Yamabe solitons and almost coKahler manifolds
    Chen, Xiaomin
    De, Uday Chand
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2021, 18 (11)
  • [6] A Note on Yamabe Solitons on 3-dimensional Almost Kenmotsu Manifolds with Qφ = φQ
    Ghosh, Gopal
    [J]. INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2023, 16 (01): : 196 - 200
  • [7] Almost η-Ricci solitons on Kenmotsu manifolds
    Patra, Dhriti Sundar
    Rovenski, Vladimir
    [J]. EUROPEAN JOURNAL OF MATHEMATICS, 2021, 7 (04) : 1753 - 1766
  • [8] Riemann solitons and almost Riemann solitons on almost Kenmotsu manifolds
    Venkatesha, V.
    Kumara, H. Aruna
    Naik, Devaraja Mallesha
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2020, 17 (07)
  • [9] THE k-ALMOST YAMABE SOLITONS AND CONTACT METRIC MANIFOLDS
    Cui, Xuehui
    Chen, Xiaomin
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2021, 51 (01) : 125 - 137
  • [10] Yamabe solitons on three-dimensional Kenmotsu manifolds
    Wang, Yaning
    [J]. BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2016, 23 (03) : 345 - 355