Characterization of almost *-conformal η-Ricci soliton on para-Kenmotsu manifolds

被引:3
|
作者
Dey, Santu [1 ]
Uddin, Siraj [2 ]
机构
[1] Bidhan Chandra Coll, Dept Math, Asansol 713304 4, W Bengal, India
[2] King Abdulaziz Univ, Dept Math, Fac Sci, Jeddah 21589, Saudi Arabia
关键词
Ricci flow; Conformal eta-Ricci soliton; *-conformal eta-Ricci soliton; Gradient almost *-conformal eta-Ricci soliton; Para-Kenmotsu manifold; REAL HYPERSURFACES;
D O I
10.2298/FIL2311601D
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The goal of this research paper is to deliberate *-conformal eta-Ricci soliton and gradient almost *-conformal eta-Ricci soliton within the framework of para-Kenmotsu manifolds as a characterization of Einstein metrics. Here, we explore that a para-Kenmotsu metric as a *-conformal eta-Ricci soliton is Einstein metric if the soliton vector field is contact and the vector field is strictly infinitesimal contact transformation. Next, we turn up the nature of the soliton and discover the scalar curvature when the manifold admitting *-conformal eta-Ricci soliton on para-Kenmotsu manifold. After that, we have shown the characterization of the vector field when the manifold satisfies *-conformal eta-Ricci soliton. Further, we have developed the nature of the potential vector field when the manifold admits gradient almost *-conformal eta-Ricci soliton. Then, we have studied gradient *-conformal eta-Ricci soliton to yield the nature of Riemannian curvature tensor and enactment of potential vector field on para-Kenmotsu manifold. Lastly, we give an example of conformal *-eta-Ricci soliton and gradient almost conformal *-eta-Ricci soliton on para-Kenmotsu manifold to prove our findings.
引用
收藏
页码:3601 / 3614
页数:14
相关论文
共 50 条
  • [1] *-η-Ricci Soliton and Gradient Almost *-η-Ricci Soliton Within the Framework of Para-Kenmotsu Manifolds
    Dey, Santu
    Turki, Nasser Bin
    [J]. FRONTIERS IN PHYSICS, 2022, 10
  • [2] Certain Results of Conformal and *-Conformal Ricci Soliton on Para-Cosymplectic and Para-Kenmotsu Manifolds
    Sarkar, Sumanjit
    Dey, Santu
    Chen, Xiaomin
    [J]. FILOMAT, 2021, 35 (15) : 5001 - 5015
  • [3] Certain properties of η-Ricci soliton on η-Einstein para-Kenmotsu manifolds
    Almia, Priyanka
    Upreti, Jaya
    [J]. FILOMAT, 2023, 37 (28) : 9575 - 9585
  • [4] PARA-KENMOTSU METRIC AS A η-RICCI SOLITON
    Kundu, Satyabrota
    [J]. KOREAN JOURNAL OF MATHEMATICS, 2021, 29 (02): : 445 - 453
  • [5] η-RICCI SOLUTIONS ON LORENTZIAN PARA-KENMOTSU MANIFOLDS
    Pandey, Shashikant
    Singh, Abhishek
    Mishra, Vishnu Narayan
    [J]. FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2021, 36 (02): : 419 - 434
  • [6] *-Ricci soliton on (κ, μ)′-almost Kenmotsu manifolds
    Dai, Xinxin
    Zhao, Yan
    De, Uday Chand
    [J]. OPEN MATHEMATICS, 2019, 17 : 874 - 882
  • [7] RICCI SOLITONS AND RICCI ALMOST SOLITONS ON PARA-KENMOTSU MANIFOLD
    Patra, Dhriti Sundar
    [J]. BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 56 (05) : 1315 - 1325
  • [8] Curvature Properties of η-Ricci Solitons on Para-Kenmotsu Manifolds
    Singh, Abhishek
    Kishor, Shyam
    [J]. KYUNGPOOK MATHEMATICAL JOURNAL, 2019, 59 (01): : 149 - 161
  • [9] Characterization of Almost η-Ricci–Yamabe Soliton and Gradient Almost η-Ricci–Yamabe Soliton on Almost Kenmotsu Manifolds
    Somnath Mondal
    Santu Dey
    Arindam Bhattacharyya
    [J]. Acta Mathematica Sinica, English Series, 2023, 39 : 728 - 748
  • [10] Characterization of Almost η-Ricci–Yamabe Soliton and Gradient Almost η-Ricci–Yamabe Soliton on Almost Kenmotsu Manifolds
    Somnath MONDAL
    Santu DEY
    Arindam BHATTACHARYYA
    [J]. Acta Mathematica Sinica,English Series, 2023, (04) : 728 - 748