Yamabe solitons on three-dimensional normal almost paracontact metric manifolds

被引:0
|
作者
Irem Küpeli Erken
机构
[1] Bursa Technical University,Department of Mathematics, Faculty of Engineering and Natural Sciences
来源
关键词
Para-Sasakian manifold; Paracosymplectic manifold; Para-Kenmotsu manifold; Yamabe soliton; Ricci soliton; Infinitesimal automorphism; Constant scalar curvature; 53C25; 53C21; 53C44; 53D15;
D O I
暂无
中图分类号
学科分类号
摘要
The purpose of the paper is to study Yamabe solitons on three-dimensional para-Sasakian, paracosymplectic and para-Kenmotsu manifolds. Mainly, we prove that the following:If the semi-Riemannian metric of a three-dimensional para-Sasakian manifold is a Yamabe soliton, then it is of constant scalar curvature, and the flow vector field V is Killing. In the next step, we prove that either the manifold has constant curvature -1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\,1$$\end{document} or V is an infinitesimal automorphism of the paracontact metric structure on the manifold.If the semi-Riemannian metric of a three-dimensional paracosymplectic manifold is a Yamabe soliton, then it has constant scalar curvature. Furthermore either the manifold is η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta $$\end{document}-Einstein, or Ricci flat.If the semi-Riemannian metric on a three-dimensional para-Kenmotsu manifold is a Yamabe soliton, then the manifold is of constant sectional curvature -1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\,1$$\end{document}. Furthermore, Yamabe soliton is expanding with λ=-6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda =-6$$\end{document}. Finally, we construct examples to illustrate the results obtained in previous sections.
引用
收藏
页码:172 / 184
页数:12
相关论文
共 50 条
  • [1] Yamabe solitons on three-dimensional normal almost paracontact metric manifolds
    Kupeli Erken, Irem
    [J]. PERIODICA MATHEMATICA HUNGARICA, 2020, 80 (02) : 172 - 184
  • [2] δ-Almost Yamabe Solitons in Paracontact Metric Manifolds
    De, Krishnendu
    De, Uday Chand
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2021, 18 (05)
  • [3] Yamabe Solitons on Three-Dimensional N(k)-Paracontact Metric Manifolds
    Suh, Young Jin
    Mandal, Krishanu
    [J]. BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2018, 44 (01): : 183 - 191
  • [4] Yamabe Solitons on Three-Dimensional N(k)-Paracontact Metric Manifolds
    Young Jin Suh
    Krishanu Mandal
    [J]. Bulletin of the Iranian Mathematical Society, 2018, 44 : 183 - 191
  • [5] Geometry of paracontact metric as an almost Yamabe solitons
    Kumara, H. Aruna
    Venkatesha, V.
    Fasihi-Ramandi, Gh.
    Naik, Devaraja Mallesha
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2023, 20 (05)
  • [6] RICCI SOLITONS IN 3-DIMENSIONAL NORMAL ALMOST PARACONTACT METRIC MANIFOLDS
    Perktas, Selcen Yuksel
    Keles, Sadik
    [J]. INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2015, 8 (02): : 34 - 45
  • [7] Yamabe and quasi-Yamabe solitons in paracontact metric manifolds
    De, Uday Chand
    Suh, Young Jin
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2021, 18 (12)
  • [8] *-Ricci Solitons on Three-dimensional Normal Almost Contact Metric Manifolds
    K. Mandal
    S. Makhal
    [J]. Lobachevskii Journal of Mathematics, 2019, 40 : 189 - 194
  • [9] *-Ricci Solitons on Three-dimensional Normal Almost Contact Metric Manifolds
    Mandal, K.
    Makhal, S.
    [J]. LOBACHEVSKII JOURNAL OF MATHEMATICS, 2019, 40 (02) : 189 - 194
  • [10] ON THREE-DIMENSIONAL N(k)-PARACONTACT METRIC MANIFOLDS AND RICCI SOLITONS
    De, U. C.
    Deshmukh, S.
    Mandal, K.
    [J]. BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2017, 43 (06) : 1571 - 1583