Yamabe solitons on three-dimensional normal almost paracontact metric manifolds

被引:0
|
作者
Irem Küpeli Erken
机构
[1] Bursa Technical University,Department of Mathematics, Faculty of Engineering and Natural Sciences
来源
关键词
Para-Sasakian manifold; Paracosymplectic manifold; Para-Kenmotsu manifold; Yamabe soliton; Ricci soliton; Infinitesimal automorphism; Constant scalar curvature; 53C25; 53C21; 53C44; 53D15;
D O I
暂无
中图分类号
学科分类号
摘要
The purpose of the paper is to study Yamabe solitons on three-dimensional para-Sasakian, paracosymplectic and para-Kenmotsu manifolds. Mainly, we prove that the following:If the semi-Riemannian metric of a three-dimensional para-Sasakian manifold is a Yamabe soliton, then it is of constant scalar curvature, and the flow vector field V is Killing. In the next step, we prove that either the manifold has constant curvature -1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\,1$$\end{document} or V is an infinitesimal automorphism of the paracontact metric structure on the manifold.If the semi-Riemannian metric of a three-dimensional paracosymplectic manifold is a Yamabe soliton, then it has constant scalar curvature. Furthermore either the manifold is η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta $$\end{document}-Einstein, or Ricci flat.If the semi-Riemannian metric on a three-dimensional para-Kenmotsu manifold is a Yamabe soliton, then the manifold is of constant sectional curvature -1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\,1$$\end{document}. Furthermore, Yamabe soliton is expanding with λ=-6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda =-6$$\end{document}. Finally, we construct examples to illustrate the results obtained in previous sections.
引用
收藏
页码:172 / 184
页数:12
相关论文
共 50 条
  • [41] Ricci solitons and gradient Ricci solitons on 3-dimensional normal almost contact metric manifolds
    De, Uday Chand
    Turan, Mine
    Yildiz, Ahmet
    De, Avik
    [J]. PUBLICATIONES MATHEMATICAE-DEBRECEN, 2012, 80 (1-2): : 127 - 142
  • [42] Three-dimensional homogeneous Lorentzian Yamabe solitons
    E. Calviño-Louzao
    J. Seoane-Bascoy
    M. E. Vázquez-Abal
    R. Vázquez-Lorenzo
    [J]. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 2012, 82 : 193 - 203
  • [43] Ricci Almost Solitons on Three-Dimensional Quasi-Sasakian Manifolds
    Sarkar, Avijit
    Sil, Amit
    Paul, Avijit Kumar
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 2019, 89 (04) : 705 - 710
  • [44] Almost quasi-Yamabe solitons on almost cosymplectic manifolds
    Chen, Xiaomin
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2020, 17 (05)
  • [45] Ricci Almost Solitons on Three-Dimensional Quasi-Sasakian Manifolds
    Avijit Sarkar
    Amit Sil
    Avijit Kumar Paul
    [J]. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2019, 89 : 705 - 710
  • [46] The Geometry of δ-Ricci-Yamabe Almost Solitons on Para- contact Metric Manifolds
    Mondal, Somnath
    Dey, Santu
    Suh, Young jin
    Bhattacharyya, Arindam
    [J]. KYUNGPOOK MATHEMATICAL JOURNAL, 2023, 63 (04): : 623 - 638
  • [47] Almost Ricci-Yamabe solitons on Almost Kenmotsu manifolds
    Khatri, Mohan
    Singh, Jay Prakash
    [J]. ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2023, 16 (08)
  • [48] The k-almost Yamabe solitons and almost coKahler manifolds
    Chen, Xiaomin
    De, Uday Chand
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2021, 18 (11)
  • [49] Space-Like Slant Curves in Three-Dimensional Normal Almost Paracontact Geometry
    Mircea Crasmareanu
    Camelia Frigioiu
    [J]. Iranian Journal of Science and Technology, Transactions A: Science, 2017, 41 : 1123 - 1129
  • [50] Space-Like Slant Curves in Three-Dimensional Normal Almost Paracontact Geometry
    Crasmareanu, Mircea
    Frigioiu, Camelia
    [J]. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2017, 41 (A4): : 1123 - 1129