The purpose of the paper is to study Yamabe solitons on three-dimensional para-Sasakian, paracosymplectic and para-Kenmotsu manifolds. Mainly, we prove that the following:If the semi-Riemannian metric of a three-dimensional para-Sasakian manifold is a Yamabe soliton, then it is of constant scalar curvature, and the flow vector field V is Killing. In the next step, we prove that either the manifold has constant curvature -1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$-\,1$$\end{document} or V is an infinitesimal automorphism of the paracontact metric structure on the manifold.If the semi-Riemannian metric of a three-dimensional paracosymplectic manifold is a Yamabe soliton, then it has constant scalar curvature. Furthermore either the manifold is η\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\eta $$\end{document}-Einstein, or Ricci flat.If the semi-Riemannian metric on a three-dimensional para-Kenmotsu manifold is a Yamabe soliton, then the manifold is of constant sectional curvature -1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$-\,1$$\end{document}. Furthermore, Yamabe soliton is expanding with λ=-6\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\lambda =-6$$\end{document}. Finally, we construct examples to illustrate the results obtained in previous sections.