Yamabe solitons on three-dimensional normal almost paracontact metric manifolds

被引:0
|
作者
Irem Küpeli Erken
机构
[1] Bursa Technical University,Department of Mathematics, Faculty of Engineering and Natural Sciences
来源
关键词
Para-Sasakian manifold; Paracosymplectic manifold; Para-Kenmotsu manifold; Yamabe soliton; Ricci soliton; Infinitesimal automorphism; Constant scalar curvature; 53C25; 53C21; 53C44; 53D15;
D O I
暂无
中图分类号
学科分类号
摘要
The purpose of the paper is to study Yamabe solitons on three-dimensional para-Sasakian, paracosymplectic and para-Kenmotsu manifolds. Mainly, we prove that the following:If the semi-Riemannian metric of a three-dimensional para-Sasakian manifold is a Yamabe soliton, then it is of constant scalar curvature, and the flow vector field V is Killing. In the next step, we prove that either the manifold has constant curvature -1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\,1$$\end{document} or V is an infinitesimal automorphism of the paracontact metric structure on the manifold.If the semi-Riemannian metric of a three-dimensional paracosymplectic manifold is a Yamabe soliton, then it has constant scalar curvature. Furthermore either the manifold is η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta $$\end{document}-Einstein, or Ricci flat.If the semi-Riemannian metric on a three-dimensional para-Kenmotsu manifold is a Yamabe soliton, then the manifold is of constant sectional curvature -1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\,1$$\end{document}. Furthermore, Yamabe soliton is expanding with λ=-6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda =-6$$\end{document}. Finally, we construct examples to illustrate the results obtained in previous sections.
引用
收藏
页码:172 / 184
页数:12
相关论文
共 50 条